84 resultados para Thermodynamic parameters
em Cambridge University Engineering Department Publications Database
Resumo:
Nanobodies are single-domain fragments of camelid antibodies that are emerging as versatile tools in biotechnology. We describe here the interactions of a specific nanobody, NbSyn87, with the monomeric and fibrillar forms of α-synuclein (αSyn), a 140-residue protein whose aggregation is associated with Parkinson's disease. We have characterized these interactions using a range of biophysical techniques, including nuclear magnetic resonance and circular dichroism spectroscopy, isothermal titration calorimetry and quartz crystal microbalance measurements. In addition, we have compared the results with those that we have reported previously for a different nanobody, NbSyn2, also raised against monomeric αSyn. This comparison indicates that NbSyn87 and NbSyn2 bind with nanomolar affinity to distinctive epitopes within the C-terminal domain of soluble αSyn, comprising approximately amino acids 118-131 and 137-140, respectively. The calorimetric and quartz crystal microbalance data indicate that the epitopes of both nanobodies are still accessible when αSyn converts into its fibrillar structure. The apparent affinities and other thermodynamic parameters defining the binding between the nanobody and the fibrils, however, vary significantly with the length of time that the process of fibril formation has been allowed to progress and with the conditions under which formation occurs, indicating that the environment of the C-terminal domain of αSyn changes as fibril assembly takes place. These results demonstrate that nanobodies are able to target forms of potentially pathogenic aggregates that differ from each other in relatively minor details of their structure, such as those associated with fibril maturation.
Resumo:
Nanobodies are single-domain fragments of camelid antibodies that are emerging as versatile tools in biotechnology. We describe here the interactions of a specific nanobody, NbSyn87, with the monomeric and fibrillar forms of α-synuclein (αSyn), a 140-residue protein whose aggregation is associated with Parkinson's disease. We have characterized these interactions using a range of biophysical techniques, including nuclear magnetic resonance and circular dichroism spectroscopy, isothermal titration calorimetry and quartz crystal microbalance measurements. In addition, we have compared the results with those that we have reported previously for a different nanobody, NbSyn2, also raised against monomeric αSyn. This comparison indicates that NbSyn87 and NbSyn2 bind with nanomolar affinity to distinctive epitopes within the C-terminal domain of soluble αSyn, comprising approximately amino acids 118-131 and 137-140, respectively. The calorimetric and quartz crystal microbalance data indicate that the epitopes of both nanobodies are still accessible when αSyn converts into its fibrillar structure. The apparent affinities and other thermodynamic parameters defining the binding between the nanobody and the fibrils, however, vary significantly with the length of time that the process of fibril formation has been allowed to progress and with the conditions under which formation occurs, indicating that the environment of the C-terminal domain of αSyn changes as fibril assembly takes place. These results demonstrate that nanobodies are able to target forms of potentially pathogenic aggregates that differ from each other in relatively minor details of their structure, such as those associated with fibril maturation. © 2013 Elsevier Ltd.
Resumo:
In this paper, we review the energy requirements to make materials on a global scale by focusing on the five construction materials that dominate energy used in material production: steel, cement, paper, plastics and aluminium. We then estimate the possibility of reducing absolute material production energy by half, while doubling production from the present to 2050. The goal therefore is a 75 per cent reduction in energy intensity. Four technology-based strategies are investigated, regardless of cost: (i) widespread application of best available technology (BAT), (ii) BAT to cutting-edge technologies, (iii) aggressive recycling and finally, and (iv) significant improvements in recycling technologies. Taken together, these aggressive strategies could produce impressive gains, of the order of a 50-56 per cent reduction in energy intensity, but this is still short of our goal of a 75 per cent reduction. Ultimately, we face fundamental thermodynamic as well as practical constraints on our ability to improve the energy intensity of material production. A strategy to reduce demand by providing material services with less material (called 'material efficiency') is outlined as an approach to solving this dilemma.
Resumo:
Computer simulation results are reported for a realistic polarizable potential model of water in the supercooled region. Three states, corresponding to the low density amorphous ice, high density amorphous ice, and very high density amorphous ice phases are chosen for the analyses. These states are located close to the liquid-liquid coexistence lines already shown to exist for the considered model. Thermodynamic and structural quantities are calculated, in order to characterize the properties of the three phases. The results point out the increasing relevance of the interstitial neighbors, which clearly appear in going from the low to the very high density amorphous phases. The interstitial neighbors are found to be, at the same time, also distant neighbors along the hydrogen bonded network of the molecules. The role of these interstitial neighbors has been discussed in connection with the interpretation of recent neutron scattering measurements. The structural properties of the systems are characterized by looking at the angular distribution of neighboring molecules, volume and face area distribution of the Voronoi polyhedra, and order parameters. The cumulative analysis of all the corresponding results confirms the assumption that a close similarity between the structural arrangement of molecules in the three explored amorphous phases and that of the ice polymorphs I(h), III, and VI exists.
Resumo:
Supersonic cluster beam deposition has been used to produce films with different nanostructures by controlling the deposition parameters such as the film thickness, substrate temperature and cluster mass distribution. The field emission properties of cluster-assembled carbon films have been characterized and correlated to the evolution of the film nanostructure. Threshold fields ranging between 4 and 10 V/mum and saturation current densities as high as 0.7 mA have been measured for samples heated during deposition. A series of voltage ramps, i.e., a conditioning process, was found to initiate more stable and reproducible emission. It was found that the presence of graphitic particles (onions, nanotube embryos) in the films substantially enhances the field emission performance. Films patterned on a micrometer scale have been conditioned spot by spot by a ball-tip anode, showing that a relatively high emission site density can be achieved from the cluster-assembled material. (C) 2002 American Institute of Physics.
Resumo:
This paper considers a class of dynamic Spatial Point Processes (PP) that evolves over time in a Markovian fashion. This Markov in time PP is hidden and observed indirectly through another PP via thinning, displacement and noise. This statistical model is important for Multi object Tracking applications and we present an approximate likelihood based method for estimating the model parameters. The work is supported by an extensive numerical study.