43 resultados para Thermal convection Rayleigh-Bénard plume energy cascade Kolmogorov equation
em Cambridge University Engineering Department Publications Database
Resumo:
Energy Piles present an efficient solution for long-term carbon emission reduction and sustainable construction. However, they have received only partial acceptance by the industry, because of concerns regarding the impact of cyclic thermal changes on the serviceability of energy pile foundations. This paper investigates the applicability of the hybrid load transfer approach to load-settlement analysis of single piles behavior during thermal energy exchange processes. Back-analysis results in terms of the thermal and mechanical response of energy piles show good agreement with field test results from Lambeth College in London. © ASCE 2011.
Resumo:
A strategy to extract turbulence structures from direct numerical simulation (DNS) data is described along with a systematic analysis of geometry and spatial distribution of the educed structures. A DNS dataset of decaying homogeneous isotropic turbulence at Reynolds number Reλ = 141 is considered. A bandpass filtering procedure is shown to be effective in extracting enstrophy and dissipation structures with their smallest scales matching the filter width, L. The geometry of these educed structures is characterized and classified through the use of two non-dimensional quantities, planarity' and filamentarity', obtained using the Minkowski functionals. The planarity increases gradually by a small amount as L is decreased, and its narrow variation suggests a nearly circular cross-section for the educed structures. The filamentarity increases significantly as L decreases demonstrating that the educed structures become progressively more tubular. An analysis of the preferential alignment between the filtered strain and vorticity fields reveals that vortical structures of a given scale L are most likely to align with the largest extensional strain at a scale 3-5 times larger than L. This is consistent with the classical energy cascade picture, in which vortices of a given scale are stretched by and absorb energy from structures of a somewhat larger scale. The spatial distribution of the educed structures shows that the enstrophy structures at the 5η scale (where η is the Kolmogorov scale) are more concentrated near the ones that are 3-5 times larger, which gives further support to the classical picture. Finally, it is shown by analysing the volume fraction of the educed enstrophy structures that there is a tendency for them to cluster around a larger structure or clusters of larger structures. Copyright © 2012 Cambridge University Press.
Resumo:
It is well-known that carbon nanotube (CNT) growth from a dense arrangement of catalyst nanoparticles creates a vertically aligned CNT forest. CNT forests offer attractive anisotropic mechanical, thermal, and electrical properties, and their anisotropic structure is enabled by the self-organization of a large number of CNTs. This process is governed by individual CNT diameter, spacing, and the CNT-to-CNT interaction. However, little information is known about the self-organization of CNTs within a forest. Insight into the self-organization is, however, essential for tailoring the properties of the CNT forests for applications such as electrical interconnects, thermal interfaces, dry adhesives and energy storage. We demonstrate that arrays of CNT micropillars having micron-scale diameters organize in a similar manner as individual CNTs within a forest. For example, as previously demonstrated for individual CNTs within a forest, entanglement of small-diameter CNT micropillars during the initial stage of growth creates a film of entwined pillars. This layer enables coordinated subsequent growth of the pillars in the vertical direction, in a case where isolated pillars would not grow in a self-supporting fashion. Finally, we provide a detailed overview of the self-organization as a function of the diameter, length and spacing of the CNT pillars. This study, which is applicable to many one-dimensional nanostructured films, demonstrates guidelines for tailoring the self-organization which can enable control of the collective mechanical, electrical and interfacial properties of the films. © 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a combined experimental and numerical study on natural convection in open-celled metal foams. The effective thermal conductivities of steel alloy (FeCrAlY) samples with different relative densities and cell sizes are measured with the guarded-hot-plate method. To examine the natural convection effect, the measurements are conducted under both vacuum and ambient conditions for a range of temperatures. The experimental results show that natural convection is very significant, accounting for up to 50% of the effective foam conductivity obtained at ambient pressure. This has been attributed to the high porosity (ε > 0.9) and inter-connected open cells of the metal foams studied. Morphological parameters characterizing open-celled FeCrAlY foams are subsequently identified and their cross-relationships are built. The non-equilibrium two-equation energy transfer model is employed, and selected calculations show that the non-equilibrium effect between the solid foam skeleton and air is significant. The study indicates that the combined parameter, i.e., the porous medium Rayleigh number, is no longer appropriate to correlate natural convection by itself when the Darcy number is sufficiently large as in the case of natural convection in open-celled metal foams. Good agreement between model predictions and experimental measurements is obtained. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
The heat dissipation capability of highly porous cellular metal foams with open cells subject to forced air convection is studied using a combined experimental and analytical approach. The cellular morphologies of six FeCrAlY (an iron-based alloy) foams and six copper alloy foams with a range of pore sizes and porosities are quantified with the scanning electronic microscope and image analysis. Experimental measurements on pressure drop and heat transfer for copper foams are carried out. A numerical model for forced convection across open-celled metal foams is subsequently developed, and the predictions are compared with those measured. Reasonably good agreement with test data is obtained, given the complexity of the cellular foam morphology and the associated momentum/energy transport. The results show that cell size has a more significant effect on the overall heat transfer than porosity. An optimal porosity is obtained based on the balance between pressure drop and overall heat transfer, which decreases as the Reynolds number is increased.
Resumo:
This paper reports the application of Advanced Process Control (APC) techniques for improving the thermal energy efficiency of a paperboard-making process by regulating the Machine Direction (MD) profile of the basis weight and moisture content of the paper-board. A Model Predictive Controller (MPC) is designed so that the sheet moisture and basis weight tracking errors along with variations of the sheet moisture and basis weight are reduced. Also, the drainage is maximised through improved wet-end stability which can facilitate driving the sheet moisture set-point closer to its upper specification limit over time. It is shown that the proposed strategy can result in reducing steam usage by 8-10%. A simulation study based on a UK board machine is presented to show the effectiveness of the proposed technique. © 2011 Intl Journal of Adv Mechatr.
Resumo:
There is potential to extract energy from wastewater in a number of ways, including: kinetic energy using micro-hydro systems, chemical energy through the incineration of sludge, biomass energy from the biogas produced after anaerobic sludge digestion, and thermal energy as heat. This paper considers the last option and asks how much heat could be recovered under UK climatic conditions and can this heat be used effectively by wastewater treatment plants to reduce their carbon footprint? Four wastewater treatment sites in southern England are investigated and the available heat that can be recovered at those sites is quantified. Issues relating to the environmental, economic and practical constraints on how energy can be realistically recovered and utilised are discussed .The results show there is a definite possibility for thermal energy recovery with potential savings at some sites of up to 35,000 tonnes of total long-cycle carbon equivalent (fossil fuel) emissions per year being achievable. The paper also shows that the financial feasibility of three options for using the heat (either for district heating, sludge drying or thermophilic heating in sludge digestion processes) is highly dependant upon the current shadow price of carbon. Without the inclusion of the cost of carbon, the financial feasibility is significantly limited. An environmental constraint for the allowable discharge temperature of effluent after heat-extraction was found to be the major limitation to the amount of energy available for recovery. The paper establishes the true potential of thermal energy recovery from wastewater in English conditions and the economic feasibility of reducing the carbon footprint of wastewater treatment operations using this approach.