29 resultados para The Real Failure Rate of Restaurants
em Cambridge University Engineering Department Publications Database
Resumo:
The effect of strain rate upon the uniaxial response of Ultra High Molecular-weight Polyethylene (UHMWPE) fibres, yarns and laminates of lay-up [0/90]48 has been measured in both the 0/90 and ±45 configurations. The tensile strength of the matrix-dominated ±45 laminate is two orders of magnitude less than that of the fibre-dominated 0/90 laminate, and is more sensitive to strain rate. A piezoelectric force sensor device was developed to obtain the high strain rate data, and this achieved a rise time of less than 1 μs. It is found that the failure strength (and failure strain) of the yarn is almost insensitive to strain rate within the range (10 -1-103 s-1). At low strain rates (below 10 -1 s-1), creep of the yarn dominates and the failure strain increases with diminishing strain rate. The tensile strength of the dry yarn exceeds that of the laminate by about 20%. Tests on single fibres exceed the strength of the yarn by 20%. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
We describe developments in the integration of analyte specific holographic sensors into PDMS-based microfluidic devices for the purpose of continuous, low-impact monitoring of extra-cellular change in micro-bioreactors. Holographic sensors respond to analyte concentration via volume change, which makes their reduction in size and integration into spatially confined fluidics difficult. Through design and process modification many of these constraints have been addressed, and a microfluidics-based device capable of real-time monitoring of the pH change caused by Lactobacillus casei fermentation is presented as a general proof-of-concept for a wide array of possible devices.
Integration of holographic sensors into microfluidics for the real-time pH sensing of L Casei growth