313 resultados para Texture recognition
em Cambridge University Engineering Department Publications Database
Fourier analysis and gabor filtering for texture analysis and local reconstruction of general shapes
Resumo:
Since the pioneering work of Gibson in 1950, Shape- From-Texture has been considered by researchers as a hard problem, mainly due to restrictive assumptions which often limit its applicability. We assume a very general stochastic homogeneity and perspective camera model, for both deterministic and stochastic textures. A multi-scale distortion is efficiently estimated with a previously presented method based on Fourier analysis and Gabor filters. The novel 3D reconstruction method that we propose applies to general shapes, and includes non-developable and extensive surfaces. Our algorithm is accurate, robust and compares favorably to the present state of the art of Shape-From- Texture. Results show its application to non-invasively study shape changes with laid-on textures, while rendering and retexturing of cloth is suggested for future work. © 2009 IEEE.
Resumo:
The automated detection of structural elements (e.g., columns and beams) from visual data can be used to facilitate many construction and maintenance applications. The research in this area is under initial investigation. The existing methods solely rely on color and texture information, which makes them unable to identify each structural element if these elements connect each other and are made of the same material. The paper presents a novel method of automated concrete column detection from visual data. The method overcomes the limitation by combining columns’ boundary information with their color and texture cues. It starts from recognizing long vertical lines in an image/video frame through edge detection and Hough transform. The bounding rectangle for each pair of lines is then constructed. When the rectangle resembles the shape of a column and the color and texture contained in the pair of lines are matched with one of the concrete samples in knowledge base, a concrete column surface is assumed to be located. This way, one concrete column in images/videos is detected. The method was tested using real images/videos. The results are compared with the manual detection ones to indicate the method’s validity.
Resumo:
Pavement condition assessment is essential when developing road network maintenance programs. In practice, pavement sensing is to a large extent automated when regarding highway networks. Municipal roads, however, are predominantly surveyed manually due to the limited amount of expensive inspection vehicles. As part of a research project that proposes an omnipresent passenger vehicle network for comprehensive and cheap condition surveying of municipal road networks this paper deals with pothole recognition. Existing methods either rely on expensive and high-maintenance range sensors, or make use of acceleration data, which can only provide preliminary and rough condition surveys. In our previous work we created a pothole detection method for pavement images. In this paper we present an improved recognition method for pavement videos that incrementally updates the texture signature for intact pavement regions and uses vision tracking to track detected potholes. The method is tested and results demonstrate its reasonable efficiency.
Resumo:
The Chinese language is based on characters which are syllabic in nature. Since languages have syllabotactic rules which govern the construction of syllables and their allowed sequences, Chinese character sequence models can be used as a first level approximation of allowed syllable sequences. N-gram character sequence models were trained on 4.3 billion characters. Characters are used as a first level recognition unit with multiple pronunciations per character. For comparison the CU-HTK Mandarin word based system was used to recognize words which were then converted to character sequences. The character only system error rates for one best recognition were slightly worse than word based character recognition. However combining the two systems using log-linear combination gives better results than either system separately. An equally weighted combination gave consistent CER gains of 0.1-0.2% absolute over the word based standard system. Copyright © 2009 ISCA.