5 resultados para Temperature layers

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the deposition, annealing and characterisation of semi-insulating oxygen-doped silicon films at temperatures compatible with polysilicon circuitry on glass. The semi-insulating layers are deposited by the plasma enhanced chemical vapour deposition technique from silane (SiH4), nitrous oxide (N2O) and helium (He) gas mixtures at a temperature of 350 °C. The as-deposited films are then furnace annealed at 600 °C which is the maximum process temperature. Raman analysis shows the as-deposited and annealed films to be completely amorphous. The most important deposition variable is the N2O SiH4 gas ratio. By varying the N2O SiH4 ratio the conductivity of the annealed films can be accurately controlled, for the first time, down to a minimum of ≈10-7Ω-1cm-1 where they exhibit a T -1 4 temperature dependence indicative of a hopping conduction mechanism. Helium dilution of the reactant gases is shown to improve both film uniformity and reproducibility. A model for the microstructure of these semi-insulating amorphous oxygen-doped silicon films is proposed to explain the observed physical and electrical properties. © 1995.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Turbulent wedges induced by a 3D surface roughness placed in a laminar boundary layer over a flat plate were visualised for the first time using both shear-sensitive and temperature-sensitive liquid crystals. The experiments were carried out at three different levels of favourable pressure gradients. The purpose of this investigation was to examine the spreading angles of the turbulent wedges indicated by their associated surface shear stresses and heat transfer characteristics and hence obtain further insight about the difference in the behaviour of transitional momentum and thermal boundary layers when a streamwise pressure gradient exists. It was shown that under a zero pressure gradient the spreading angles indicated by the two types of liquid crystals are the same, but the difference increases as the level of favourable pressure gradient increases. The result from the present study could have an important implication to the transition modelling of thermal boundary layers over gas turbine blades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new model is presented which describes the growth of the duplex layers of Fe3O4 on mild steel in high temperature, deoxygenated, neutral or alkaline aqueous solutions. It is shown that the layers grow by the ingress of water along oxide micropores to the metal-oxide interface and by the rate-limiting outward diffusion of Fe ions along oxide grain boundaries. The new model accounts for the observed temperature-dependence and pH-dependence of the corrosion, the morphology of inner and outer layer crystallites, the segregation of alloying elements, and the location of hydrogen evolution. The model can also be generalized to other steels and alloys. © 1989.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a method to realize vertically oriented Ge nanowires on Si(111) substrates. Ge nanowires were grown by chemical vapor deposition using Au nanoparticles to seed nanowire growth via a vapor-liquid-solid growth mechanism. Rapid oxidation of Si during Au nanoparticle application inhibits the growth of vertically oriented Ge nanowires directly on Si. The present method employs thin Ge buffer layers grown at low temperature less than 600 degrees C to circumvent the oxidation problem. By using a thin Ge buffer layer with root-mean-square roughness of approximately 2 nm, the yield of vertically oriented Ge nanowires is as high as 96.3%. This yield is comparable to that of homoepitaxial Ge nanowires. Furthermore, branched Ge nanowires could be successfully grown on these vertically oriented Ge nanowires by a secondary seeding technique. Since the buffer layers are grown under moderate conditions without any high temperature processing steps, this method has a wide process window highly suitable for Si-based microelectronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work specific film structures of Li-Nb-O/Li/Li-Nb-O are investigated by AC Impedance Spectroscopy measurements at different temperatures. This gives the opportunity to investigate properties of the material itself and, at the same time, to consider the influence of the grain boundaries on the ionic behavior of the polycrystalline Lithium Niobate. On the other hand, LiNbO3/Li/Cu multi-layers are studied as electrolyte/anode bi-layers and potential parts of "Li-free" microbatteries. The Li deficiency in the as deposited Li-Nb-O films is cured by forming a "sandwich" of Li-Nb-O/Li/Li-Nb-O, which after annealing becomes ionic conductor. The electrical behavior of an annealed film depends on two sources. The first is due to properties of the material itself and the second is based on the network of the grain boundaries. The average size of the grains is strongly influenced by the structure of the ohmic-contact/substrate. The electrical behavior of the electrolyte/anode interface of the "Li-free" structure LiNbO3/Li/Cu/Au is very similar to the impedance measurements of the single LiNbO3 single films. The whole multilayer structure, though, presents a third relaxation time which is consistent of a small resistance. This resistance is independent of temperature and it seems that is due to the metallic interface Li/Cu/Au. © 2010 Elsevier B.V. All rights reserved.