25 resultados para Temperature characteristics
em Cambridge University Engineering Department Publications Database
Resumo:
An explanation for the observed variations in the output behaviour of SOI transistors with different buried oxide thicknesses is presented. At low drain bias, the temperature effects are relatively insignificant while at high drain bias, the temperature effects dominate the nonlinear behaviour of the output characteristics.
Effect of laser heating temperature on coating characteristics of Stellite 6 deposited by cold spray
Resumo:
Laser-assisted cold spray (LCS) is a new coating and fabrication process which combines some advantages of CS: solid-state deposition, retain their initial composition and high build rate with the ability to deposit materials which are either difficult or impossible to deposit using cold spray alone. Stellite 6 powder is deposited on medium carbon steels by LCS using N 2 as carrier gas pressure. The topography, cross section thickness, structure of the coatings is examined by SEM, optical microscopy, EDX. The results show that thickness and fluctuation of coating are improved with increased deposition site temperature. Porosity of coating is affected by N 2 and deposition site temperature. In this paper, it presents optimal coating using N 2 at a pressure of 3 MPa and temperature of 450°C and deposition site temperature of 1100°C.
Resumo:
This paper describes multiple field-coupled simulations and device characterization of fully CMOS-MEMS-compatible smart gas sensors. The sensor structure is designated for gas/vapour detection at high temperatures (>300 °C) with low power consumption, high sensitivity and competent mechanic robustness employing the silicon-on-insulator (SOI) wafer technology, CMOS process and micromachining techniques. The smart gas sensor features micro-heaters using p-type MOSFETs or polysilicon resistors and differentially transducing circuits for in situ temperature measurement. Physical models and 3D electro-thermo-mechanical simulations of the SOI micro-hotplate induced by Joule, self-heating, mechanic stress and piezoresistive effects are provided. The electro-thermal effect initiates and thus affects electronic and mechanical characteristics of the sensor devices at high temperatures. Experiments on variation and characterization of micro-heater resistance, power consumption, thermal imaging, deformation interferometry and dynamic thermal response of the SOI micro-hotplate have been presented and discussed. The full integration of the smart gas sensor with automatically temperature-reading ICs demonstrates the lowest power consumption of 57 mW at 300 °C and fast thermal response of 10 ms. © 2008 IOP Publishing Ltd.
Resumo:
Transport measurements were performed on individual PECVD grown MWCNT nanobridge structures. Temperature dependent conductance measurements show that as the temperature is decreased, the conductance also decreases. The nanotubes were able to carry high current densities with the observed maximum at ∼108 A/cm2. High volatile measurements reveal that the PECVD grown MWCNTs break down in segments of nanotube shells.
Resumo:
After nearly 15 years of research effort, High Temperature Superconductors (HTS) are finding a wide range of practical applications. A clear understanding of the factors controlling the current carrying capacity of these materials is a prerequisite to their successful technological development. The critical current density (Jc) in HTS is directly dependent on the structure and pinning of the Flux Line Lattice (FLL) in these materials. This thesis presents an investigation of the Jc anisotropy in HTS. The use of thin films grown on off c-axis (vicinal) substrates allowed the effect of current directions outside the cuprate planes to be studied. With this experimental geometry Berghuis, et al. (Phys. Rev. Lett. 79, 12, pg. 2332) observed a striking flux channelling effect in vicinal YBa2Cu3O7-δ (YBCO) films. By confirming, and extending, this observation, it is demonstrated that this is an intrinsic effect. The results obtained, appear to fit well with the predictions of a field angle dependent cross-over from a three dimensional rectilinear FLL to a kinked lattice of strings and pancakes. The pinning force density for movement of strings inside the cuprate planes is considerably less than that on vortex pancake elements. When the FLL is entirely string-like this reduced pinning leads to the observed channelling minima. It is observed that anti-phase boundaries enhance the Jc in vicinal YBCO films by strongly pinning vortex strings. The effect on the FLL structure cross-over of increasing anisotropy has been elucidated using de-oxygenated vicinal YBCO films. Intriguingly, the counter intuitive prediction that the range of applied field angle for which the kinked lattice is fully developed reduces with increasing anisotropy, appears to be confirmed. Although vortex channelling cannot be observed in c-axis YBCO films, the pinning force density for vortex string channelling has been extracted by observing string dragging. By studying the effect of rotating the applied field at a constant angle to the cuprate planes, it is possible to observe the cross-over into the string pancake regime in c-axis films. In the 3D region, the observed behaviour is well explained by the anisotropic Ginzburg-Landau model. Measurements were also made on thin films of the much more anisotropic Bi 2Sr2CaCu2O8+x material, grown on vicinal substrates. The absence of any flux channelling effect and clear adherence to the expected Kes-Law behaviour in the observed Jc characteristics does not provide evidence for the existence of the predicted ‘crossing lattice’ in Bi 2Sr2CaCu2O8+x .
Resumo:
Turbulent wedges induced by a 3D surface roughness placed in a laminar boundary layer over a flat plate were visualised for the first time using both shear-sensitive and temperature-sensitive liquid crystals. The experiments were carried out at three different levels of favourable pressure gradients. The purpose of this investigation was to examine the spreading angles of the turbulent wedges indicated by their associated surface shear stresses and heat transfer characteristics and hence obtain further insight about the difference in the behaviour of transitional momentum and thermal boundary layers when a streamwise pressure gradient exists. It was shown that under a zero pressure gradient the spreading angles indicated by the two types of liquid crystals are the same, but the difference increases as the level of favourable pressure gradient increases. The result from the present study could have an important implication to the transition modelling of thermal boundary layers over gas turbine blades.
Resumo:
Desired performance of unpressurized integral collector storage systems hinges on the appropriate selection of storage volume and the immersed heat exchanger. This paper presents analytical results expressing the relation between storage volume, number of heat exchanger transfer units and temperature limited performance. For a system composed of a single storage element, the limiting behavior of a perfectly stratified storage element is shown to be superior to a fully-mixed storage element, consistent with more general analysis of thermal storage. Since, however, only the fully-mixed limit is readily obtainable in a physical system, the present paper also examines a division of the storage volume into separate compartments. This multi-element storage system shows significantly improved discharge characteristics as a result of improved elemental area utilization and temperature variation between elements, comparable in many cases to a single perfectly-stratified storage element. In addition, the multi-element system shows increased robustness with respect to variations in heat exchanger effectiveness and initial storage temperature.
Resumo:
Capacitance-voltage (C-V) characteristics of lead zirconate titanate (PZT) thin films with a thickness of 130 nm were measured between 300 and 533 K. The transition between ferroelectric and paraelectric phases was revealed to be of second order in our case, with a Curie temperature at around 450 K. A linear relationship was found between the measured capacitance and the inverse square root of the applied voltage. It was shown that such a relationship could be fitted well by a universal expression of C/A = k(V+V(0))(-1/2) and that this expression could be derived by expanding the Landau-Devonshire free energy at an effective equilibrium position of the Ti/Zr ion in a PZT unit cell. By using the derived equations in this work, the free energy parameters for an individual material can be obtained solely from the corresponding C-V data, and the temperature dependences of both remnant polarization and coercive voltage are shown to be in quantitative agreement with the experimental data.
Resumo:
Molecular self-organization has the potential to serve as an efficient and versatile tool for the spontaneous creation of low-dimensional nanostructures on surfaces. We demonstrate how the subtle balance between intermolecular interactions and molecule-surface interactions can be altered by modifying the environment or through manipulation by means of the tip in a scanning tunnelling microscope (STM) at room temperature. We show how this leads to the distinctive ordering and disordering of a triangular nanographene molecule, the trizigzag-hexa-peri-hexabenzocoronenes-phenyl-6 (trizigzagHBC-Ph6), on two different surfaces: graphite and Au(111). The assembly of submonolayer films on graphite reveals a sixfold packing symmetry under UHV conditions, whereas at the graphite-phenyloctane interface, they reorganize into a fourfold packing symmetry, mediated by the solvent molecules. On Au(111) under UHV conditions in the multilayer films we investigated, although disorder prevails with the molecules being randomly distributed, their packing behaviour can be altered by the scanning motion of the tip. The asymmetric diode-like current-voltage characteristics of the molecules are retained when deposited on both substrates. This paper highlights the importance of the surrounding medium and any external stimulus in influencing the molecular organization process, and offers a unique approach for controlling the assembly of molecules at a desired location on a substrate.
Resumo:
Modeling and numerical analysis of diamond m-i-p+ diode have been performed for static and transient analysis using TCAD Sentaurus platform. The simulation results are compared with experimental measurements. Prediction of transient turn-off characteristics of diamond m-i-p+ diode at high temperature is performed for the first time. It was found that unlike conventional Si diode, peak reverse current in diamond m-i-p+ diode reduces with increasing temperature while on-state voltage drop increases. © 2011 IEEE.
Resumo:
In this article a study of the fracture characteristics of Co66Fe4Mo2Si16B12 amorphous ribbon in the as-quenched state and after relaxation is presented. In the as-quenched state, the morphology of the crack surface shows a 'vein pattern' structure that corresponds to a large amount of plastic flow. After relaxation the surface morphology of the crack shows that when the temperature of the thermal annealing increases the plastic flow involved in the crack decreases. In the as-quenched state dynamic fracture characteristics (crack branching and stress wave induced crack) have been observed. These dynamic characteristics have not been observed in the relaxed samples but in the samples annealed at 250 °C for 20 min apart from the main crack, a crack along the width of the ribbon has been observed. © 2006 Elsevier B.V. All rights reserved.
Conduction bottleneck in silicon nanochain single electron transistors operating at room temperature
Resumo:
Single electron transistors are fabricated on single Si nanochains, synthesised by thermal evaporation of SiO solid sources. The nanochains consist of one-dimensional arrays of ~10nm Si nanocrystals, separated by SiO 2 regions. At 300 K, strong Coulomb staircases are seen in the drain-source current-voltage (I ds-V ds) characteristics, and single-electron oscillations are seen in the drain-source current-gate voltage (I ds-V ds) characteristics. From 300-20 K, a large increase in the Coulomb blockade region is observed. The characteristics are explained using singleelectron Monte Carlo simulation, where an inhomogeneous multiple tunnel junction represents a nanochain. Any reduction in capacitance at a nanocrystal well within the nanochain creates a conduction " bottleneck", suppressing current at low voltage and improving the Coulomb staircase. The single-electron charging energy at such an island can be very high, ~20k BT at 300 K. © 2012 The Japan Society of Applied Physics.