9 resultados para Television and Learning

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

State-space inference and learning with Gaussian processes (GPs) is an unsolved problem. We propose a new, general methodology for inference and learning in nonlinear state-space models that are described probabilistically by non-parametric GP models. We apply the expectation maximization algorithm to iterate between inference in the latent state-space and learning the parameters of the underlying GP dynamics model. Copyright 2010 by the authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research was to investigate the extent to which prior technological experience of products is related to age, and if this has implications for the success of subsequent product interaction. The contribution of this work is to provide the design community with new knowledge and a greater awareness of the diversity of user needs, and particularly the needs and skills of older people. The focus of this paper is to present how individual's mental models of products and interaction were developed through experiential learning; what new knowledge was acquired, and how this contributed to the development of mental models and product understanding. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

State-space models are successfully used in many areas of science, engineering and economics to model time series and dynamical systems. We present a fully Bayesian approach to inference and learning (i.e. state estimation and system identification) in nonlinear nonparametric state-space models. We place a Gaussian process prior over the state transition dynamics, resulting in a flexible model able to capture complex dynamical phenomena. To enable efficient inference, we marginalize over the transition dynamics function and, instead, infer directly the joint smoothing distribution using specially tailored Particle Markov Chain Monte Carlo samplers. Once a sample from the smoothing distribution is computed, the state transition predictive distribution can be formulated analytically. Our approach preserves the full nonparametric expressivity of the model and can make use of sparse Gaussian processes to greatly reduce computational complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated the relationship between statistics anxiety, individual characteristics (e.g., trait anxiety and learning strategies), and academic performance. Students enrolled in a statistics course in psychology (N=147) filled in a questionnaire on statistics anxiety, trait anxiety, interest in statistics, mathematical selfconcept, learning strategies, and procrastination. Additionally, their performance in the examination was recorded. The structural equation model showed that statistics anxiety held a crucial role as the strongest direct predictor of performance. Students with higher statistics anxiety achieved less in the examination and showed higher procrastination scores. Statistics anxiety was related indirectly to spending less effort and time on learning. Trait anxiety was related positively to statistics anxiety and, counterintuitively, to academic performance. This result can be explained by the heterogeneity of the measure of trait anxiety. The part of trait anxiety that is unrelated to the specific part of statistics anxiety correlated positively with performance.