8 resultados para TRANS-AZOBENZENE
em Cambridge University Engineering Department Publications Database
Resumo:
The excitation as well as relaxation dynamics of dye-doped nematic liquid crystal cells has been explored both experimentally and theoretically. Overshoots in the build up of the probe signal diffracted from gratings written onto dye-doped liquid crystal systems have often been observed. The overshoot behaviour makes the accurate measurement of nonlinear optical (NLO) response magnitude difficult and ambiguous. Moreover, it complicates the understanding of the dynamics and the physics of the NLO processes. On the basis of the system with trans-cis isomerisation as a mechanism of the NLO effect the quantitative model has been built to describe the experimental results which we observe. The two unknown material parameters: diffusion coefficient and cis species lifetime are calculated from the relaxation data. A quantitative model of the signal build-up uses these parameters. The calculated dynamic behaviour based on this model correlates very well with the experimental data. The model is used to predict the performance of the system with various dopant diffusion properties.
Resumo:
High brightness trans-reflective bi-stable displays based on smectic A (SmA) liquid crystals (LCs) can have nearly perfect transparency in the clear state and very high reflection in the scattered state. Because the LC material in use is stable under UV radiation, this kind of displays can stand for strong day-light and therefore be ideal for outdoor applications from e-books to public signage and advertisement. However, the colour application has been limited because the traditional colourants in use are conventional dyes which are lack of UV stability and that their colours are easily photo bleached. Here we present a colour SmA display demonstrator using pigments as colourant. Mixing pigments with SmA LCs and maintain the desirable optical switching performance is not straightforward. We show here how it can be done, including how to obtain fine sized pigment nano-particles, the effects of particle size and size distribution on the display performance. Our optimized pigments/SmA compositions can be driven by a low frequency waveform (∼101Hz) to a scattered state to exhibit colour while by a high frequency waveform (∼103Hz) to a cleared state showing no colour. Finally, we will present its excellent UV life-time (at least >7.2 years) in comparison with that of dye composition (∼2.4 years). The complex interaction of pigment nano-particles with LC molecules and the resulting effects on the LC electro-optical performances are still to be fully understood. We hope this work will not only demonstrate a new and practical approach for outdoor reflective colour displays but also provide a new material system for fundamental liquid crystal colloid research work. © 2012 SPIE.