103 resultados para TILT TEST
em Cambridge University Engineering Department Publications Database
Resumo:
In the 'free-ball' version of the micro-scale abrasion or ball-cratering test the rotating ball rests against a tilted sample and a grooved drive shaft. Tests under nominally identical conditions with different apparatus commonly show small but significant differences in measured wear rate. An indirect method has been developed and demonstrated for continuous on-line measurement of the coefficient of friction in the free-ball test. Experimental investigation of the effects of sample tilt angle and drive shaft groove width shows that both these factors influence the stability of the rotation of the ball, and the shape of the abrasive slurry pool, which in turn affect the coefficient of friction in the wear scar area and the measured wear rate. It is suggested that in order to improve the reproducibility of this method the geometry of the apparatus should be specified. For the apparatus used in this work with a steel ball of 25 mm diameter, a sample tilt angle of 60-75° and a shaft groove width of about 10mm provided the most stable ball motion and a wear rate which showed least variability. © 2004 Elsevier B.V. All rights reserved.
Resumo:
In this letter, the uniform lying helix (ULH) liquid crystal texture, required for the flexoelectro-optic effect, is polymer stabilized by the addition of a small percentage of reactive mesogen to a high-tilt-angle (φ>60°) bimesogenic chiral nematic host. The electro-optic response is measured for a range of reactive mesogen concentration mixtures, and compared to the large-tilt-angle switch of the pure chiral nematic mixture. The optimum concentration of reactive mesogen, which is found to provide ample stabilization of the texture with minimal impact on the electro-optic response, is found to be approximately 3%. Our results indicate that polymer stabilization of the ULH texture using a very low concentration of reactive mesogen is a reliable way of ruggedizing flexoelectro-optic devices without interfering significantly with the electro-optics of the effect, negating the need for complicated surface alignment patterns or surface-only polymerization. The polymer stabilization is shown to reduce the temperature dependence of the flexoelectro-optic response due to "pinning" of the chiral nematic helical pitch. This is a restriction of the characteristic thermochromic behavior of the chiral nematic. Furthermore, selection of the temperature at which the sample is ultraviolet cured allows the tilt angle to be optimized for the entire chiral nematic temperature range. The response time, however, remains more sensitive to operating temperature than curing temperature. This allows the sample to be cured at low temperature and operated at high temperature, providing simultaneous optimization of these two previously antagonistic performance aspects. © 2006 American Institute of Physics.