28 resultados para T-GENE
em Cambridge University Engineering Department Publications Database
Resumo:
DNA microarrays provide such a huge amount of data that unsupervised methods are required to reduce the dimension of the data set and to extract meaningful biological information. This work shows that Independent Component Analysis (ICA) is a promising approach for the analysis of genome-wide transcriptomic data. The paper first presents an overview of the most popular algorithms to perform ICA. These algorithms are then applied on a microarray breast-cancer data set. Some issues about the application of ICA and the evaluation of biological relevance of the results are discussed. This study indicates that ICA significantly outperforms Principal Component Analysis (PCA).
Resumo:
Placing a gene of interest under the control of an inducible promoter greatly aids the purification, localization and functional analysis of proteins but usually requires the sub-cloning of the gene of interest into an appropriate expression vector. Here, we describe an alternative approach employing in vitro transposition of Tn Omega P(BAD) to place the highly regulable, arabinose inducible P(BAD) promoter upstream of the gene to be expressed. The method is rapid, simple and facilitates the optimization of expression by producing constructs with variable distances between the P(BAD) promoter and the gene. To illustrate the use of this approach, we describe the construction of a strain of Escherichia coli in which growth at low temperatures on solid media is dependent on threshold levels of arabinose. Other uses of the transposable promoter are also discussed.
Resumo:
Circadian clocks are 24-h timing devices that phase cellular responses; coordinate growth, physiology, and metabolism; and anticipate the day-night cycle. Here we report sensitivity of the Arabidopsis thaliana circadian oscillator to sucrose, providing evidence that plant metabolism can regulate circadian function. We found that the Arabidopsis circadian system is particularly sensitive to sucrose in the dark. These data suggest that there is a feedback between the molecular components that comprise the circadian oscillator and plant metabolism, with the circadian clock both regulating and being regulated by metabolism. We used also simulations within a three-loop mathematical model of the Arabidopsis circadian oscillator to identify components of the circadian clock sensitive to sucrose. The mathematical studies identified GIGANTEA (GI) as being associated with sucrose sensing. Experimental validation of this prediction demonstrated that GI is required for the full response of the circadian clock to sucrose. We demonstrate that GI acts as part of the sucrose-signaling network and propose this role permits metabolic input into circadian timing in Arabidopsis.