19 resultados para Systems of measurement.

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A turbulent boundary-layer flow over a rough wall generates a dipole sound field as the near-field hydrodynamic disturbances in the turbulent boundary-layer scatter into radiated sound at small surface irregularities. In this paper, phased microphone arrays are applied to the measurement and simulation of surface roughness noise. The radiated sound from two rough plates and one smooth plate in an open jet is measured at three streamwise locations, and the beamforming source maps demonstrate the dipole directivity. Higher source strengths can be observed on the rough plates which also enhance the trailing-edge noise. A prediction scheme in previous theoretical work is used to describe the strength of a distribution of incoherent dipoles and to simulate the sound detected by the microphone array. Source maps of measurement and simulation exhibit satisfactory similarities in both source pattern and source strength, which confirms the dipole nature and the predicted magnitude of roughness noise. However, the simulations underestimate the streamwise gradient of the source strengths and overestimate the source strengths at the highest frequency. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several approaches to designing schedule H-infinity control systems are compared. These include a controller switching approach and also parameter scheduling of an observer representation of the controller. They are illustrated by application to a Generic VSTOI. Aircraft Model (GVAM) supplied by The Royal Aerospace Establishment (RAE) at Bedford. The switched design has been tested on the simulator at RAE Bedford. The linear H-infinity designs make use of a loop-shaping followed by robust stabilisation to additive perturbations of a normalised coprime factorisation of the shaped plans. The different scheduling approaches are compared with respect to achieved robust stability levels. performance and complexity of implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lyapunov-like conditions that utilize generalizations of energy and barrier functions certifying Zeno behavior near Zeno equilibria are presented. To better illustrate these conditions, we will study them in the context of Lagrangian hybrid systems. Through the observation that Lagrangian hybrid systems with isolated Zeno equilibria must have a onedimensional configuration space, we utilize our Lyapunov-like conditions to obtain easily verifiable necessary and sufficient conditions for the existence of Zeno behavior in systems of this form. © 2007 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The standard design process for the Siemens Industrial Turbomachinery, Lincoln, Dry Low Emissions combustion systems has adopted the Eddy Dissipation Model with Finite Rate Chemistry for reacting computational fluid dynamics simulations. The major drawbacks of this model have been the over-prediction of temperature and lack of species data limiting the applicability of the model. A novel combustion model referred to as the Scalar Dissipation Rate Model has been developed recently based on a flamelet type assumption. Previous attempts to adopt the flamelet philosophy with alternative closure models have failed, with the prediction of unphysical phenomenon. The Scalar Dissipation Rate Model (SDRM) was developed from a physical understanding of scalar dissipation rate, signifying the rate of mixing of hot and cold fluids at scales relevant to sustain combustion, in flames and was validated using direct numerical simulations data and experimental measurements. This paper reports on the first industrial application of the SDRM to SITL DLE combustion system. Previous applications have considered ideally premixed laboratory scale flames. The industrial application differs significantly in the complexity of the geometry, unmixedness and operating pressures. The model was implemented into ANSYS-CFX using their inbuilt command language. Simulations were run transiently using Scale Adaptive Simulation turbulence model, which switches between Large Eddy Simulation and Unsteady Reynolds Averaged Navier Stokes using a blending function. The model was validated in a research SITL DLE combustion system prior to being applied to the actual industrial geometry at real operating conditions. This system consists of the SGT-100 burner with a glass square-sectioned combustor allowing for detailed diagnostics. This paper shows the successful validation of the SDRM against time averaged temperature and velocity within measurement errors. The successful validation allowed application of the SDRM to the SGT-100 twin shaft at the relevant full load conditions. Limited validation data was available due to the complexity of measurement in the real geometry. Comparison of surface temperatures and combustor exit temperature profiles showed an improvement compared to EDM/FRC model. Furthermore, no unphysical phenomena were predicted. This paper presents the successful application of the SDRM to the industrial combustion system. The model shows a marked improvement in the prediction of temperature over the EDM/FRC model previously used. This is of significant importance in the future applications of combustion CFD for understanding of hardware mechanical integrity, combustion emissions and dynamics of the flame. Copyright © 2012 by ASME.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Computer Aided Control Engineering involves three parallel streams: Simulation and modelling, Control system design (off-line), and Controller implementation. In industry the bottleneck problem has always been modelling, and this remains the case - that is where control (and other) engineers put most of their technical effort. Although great advances in software tools have been made, the cost of modelling remains very high - too high for some sectors. Object-oriented modelling, enabling truly re-usable models, seems to be the key enabling technology here. Software tools to support control systems design have two aspects to them: aiding and managing the work-flow in particular projects (whether of a single engineer or of a team), and provision of numerical algorithms to support control-theoretic and systems-theoretic analysis and design. The numerical problems associated with linear systems have been largely overcome, so that most problems can be tackled routinely without difficulty - though problems remain with (some) systems of extremely large dimensions. Recent emphasis on control of hybrid and/or constrained systems is leading to the emerging importance of geometric algorithms (ellipsoidal approximation, polytope projection, etc). Constantly increasing computational power is leading to renewed interest in design by optimisation, an example of which is MPC. The explosion of embedded control systems has highlighted the importance of autocode generation, directly from modelling/simulation products to target processors. This is the 'new kid on the block', and again much of the focus of commercial tools is on this part of the control engineer's job. Here the control engineer can no longer ignore computer science (at least, for the time being). © 2006 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Computer Aided Control Engineering involves three parallel streams: Simulation and modelling, Control system design (off-line), and Controller implementation. In industry the bottleneck problem has always been modelling, and this remains the case - that is where control (and other) engineers put most of their technical effort. Although great advances in software tools have been made, the cost of modelling remains very high - too high for some sectors. Object-oriented modelling, enabling truly re-usable models, seems to be the key enabling technology here. Software tools to support control systems design have two aspects to them: aiding and managing the work-flow in particular projects (whether of a single engineer or of a team), and provision of numerical algorithms to support control-theoretic and systems-theoretic analysis and design. The numerical problems associated with linear systems have been largely overcome, so that most problems can be tackled routinely without difficulty - though problems remain with (some) systems of extremely large dimensions. Recent emphasis on control of hybrid and/or constrained systems is leading to the emerging importance of geometric algorithms (ellipsoidal approximation, polytope projection, etc). Constantly increasing computational power is leading to renewed interest in design by optimisation, an example of which is MPC. The explosion of embedded control systems has highlighted the importance of autocode generation, directly from modelling/simulation products to target processors. This is the 'new kid on the block', and again much of the focus of commercial tools is on this part of the control engineer's job. Here the control engineer can no longer ignore computer science (at least, for the time being). ©2006 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Effective use of materials is one possible component of a sustainable manufacturing strategy. There are many such strategies proposed in the literature and used in practice, with confusion over what they are, what the differences among them may be and how they can be used by practitioners in design and manufacture to improve the sustainability of their product and processes. This paper reviews the literature on sustainable manufacturing strategies that deliver improved material performance. Four primary strategies were found: waste minimisation; material efficiency; resource efficiency; and eco-efficiency. The literature was analysed to determine the key characteristics of these sustainable manufacturing strategies and 17 characteristics were found. The four strategies were then compared and contrasted against all the characteristics. While current literature often uses these strategy titles in a confusing, occasionally inter-changeable manner, this study attempts to create clear separation between them. Definition, scope and practicality of measurement are shown to be key characteristics that impact upon the ability of manufacturing companies to make effective use of the proposed strategy. It is observed that the most actionable strategies may not include all of the dimensions of interest to a manufacturer wishing to become more sustainable, creating a dilemma between ease of implementation and breadth of impact. © 2008 Taylor & Francis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider the general problem of constructing nonparametric Bayesian models on infinite-dimensional random objects, such as functions, infinite graphs or infinite permutations. The problem has generated much interest in machine learning, where it is treated heuristically, but has not been studied in full generality in non-parametric Bayesian statistics, which tends to focus on models over probability distributions. Our approach applies a standard tool of stochastic process theory, the construction of stochastic processes from their finite-dimensional marginal distributions. The main contribution of the paper is a generalization of the classic Kolmogorov extension theorem to conditional probabilities. This extension allows a rigorous construction of nonparametric Bayesian models from systems of finite-dimensional, parametric Bayes equations. Using this approach, we show (i) how existence of a conjugate posterior for the nonparametric model can be guaranteed by choosing conjugate finite-dimensional models in the construction, (ii) how the mapping to the posterior parameters of the nonparametric model can be explicitly determined, and (iii) that the construction of conjugate models in essence requires the finite-dimensional models to be in the exponential family. As an application of our constructive framework, we derive a model on infinite permutations, the nonparametric Bayesian analogue of a model recently proposed for the analysis of rank data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the multi-site manufacturing domain, systems-of-systems (SoS) are rarely called so. However, there exist a number of collaborative manufacturing paradigms which closely relate to system-of-system principles. These include distributed manufacturing, dispersed network manufacturing, virtual enterprises and cloud manufacturing/manufacturing-as-a-service. This paper provides an overview of these terms and paradigms, exploring their characteristics, overlaps and differences. These manufacturing paradigms are then considered in relation to five key system-of-systems characteristics: autonomy, belonging, connectivity, diversity and emergence. Data collected from two surveys of academic and industry experts is presented and discussed, with key challenges and barriers to multi-site manufacturing SoS identified.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dynamic centrifuge modelling has been carried out at Cambridge since the late 1970s. Over this period, three different mechanical earthquake actuators were developed. In this paper the development of a new servo-hydraulic earthquake actuator is described. The basic design principles are explained along with the need to carry out these designs to match the existing services and systems of the 35 year old Turner beam centrifuge at Cambridge. In addition, some of the features of the Turner beam centrifuge are exploited in the design of this new earthquake actuator. The paper also explains the mechanical fabrication of the actuator and the control systems that were developed in order to generate real earthquake motions. Finally, the performance of this new servo-hydraulic earthquake actuator is presented and assessed based on a wide range of earthquake input motions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to better understand the stratified combustion, the propagation of flame through stratified mixture field in laminar and turbulent flow conditions has been studied by using combined PIV/PLIF techniques. A great emphasis was placed on developing methods to improve the accuracy of local measurements of flame propagation. In particular, a new PIV approach has been developed to measure the local fresh gas velocity near preheat zone of flame front. To improve the resolution of measurement, the shape of interrogation window has been continuously modified based on the local flame topology and gas expansion effect. Statistical analysis of conditioned local measurements by the local equivalence ratio of flames allows the characterization of the properties of flame propagation subjected to the mixture stratification in laminar and turbulent flows, especially the highlight of the memory effect.