20 resultados para System test complexity
em Cambridge University Engineering Department Publications Database
Resumo:
This paper describes the development of the 2003 CU-HTK large vocabulary speech recognition system for Conversational Telephone Speech (CTS). The system was designed based on a multi-pass, multi-branch structure where the output of all branches is combined using system combination. A number of advanced modelling techniques such as Speaker Adaptive Training, Heteroscedastic Linear Discriminant Analysis, Minimum Phone Error estimation and specially constructed Single Pronunciation dictionaries were employed. The effectiveness of each of these techniques and their potential contribution to the result of system combination was evaluated in the framework of a state-of-the-art LVCSR system with sophisticated adaptation. The final 2003 CU-HTK CTS system constructed from some of these models is described and its performance on the DARPA/NIST 2003 Rich Transcription (RT-03) evaluation test set is discussed.
Resumo:
Position-dependent gene expression is a critical aspect of the development and behaviour of multicellular organisms. It requires a complex series of interactions to occur between different cell types in addition to intracellular signalling cascades. We used Escherichia coli to study the properties of an artificial signalling system at the interface between two expanding cell populations. We genetically engineered one population to produce a diffusible acyl-homoserine lactone (AHL) signal, and another population to respond to it. Our experiments demonstrate how such a signal can be used to reproducibly generate simple visible patterns with high accuracy in swimming agar. The producing and responding cassettes of two such signalling systems can be linked to produce a symmetric interface for bidirectional communication that can be used to visualise molecular logic. Intracellular feedback between these two cassettes would then create a framework for self-organised patterning of higher complexity. Adapting the experiments of Basu et al. (Basu et al., 2005) using cell motility, rather than a differential response to AHL concentrations as a way to define zones of response, we noted how the interaction of sender and receiver cell populations on a swimming plate could lead to complex pattern formation. Equipping highly motile strains such as E. coli MC1000 with AHL-mediated auto-inducing systems based on Vibrio fischeri luxI/luxR and Pseudomonas aeruginosa lasI/lasR cassettes would allow the amplification of a response to an AHL signal and its propagation. We designed and synthesised codon-optimised auto-inducing luxI/R and lasI/R cassettes as optimal gene expression is crucial for the generation of robust patterns. We still have to complete and test the entire genetic circuitry, although by modelling the system we were able to demonstrate its feasibility. © 2007 The Institution of Engineering and Technology.
Resumo:
This paper discusses the development of the CU-HTK Mandarin Broadcast News (BN) transcription system. The Mandarin BN task includes a significant amount of English data. Hence techniques have been investigated to allow the same system to handle both Mandarin and English by augmenting the Mandarin training sets with English acoustic and language model training data. A range of acoustic models were built including models based on Gaussianised features, speaker adaptive training and feature-space MPE. A multi-branch system architecture is described in which multiple acoustic model types, alternate phone sets and segmentations can be used in a system combination framework to generate the final output. The final system shows state-of-the-art performance over a range of test sets. ©2006 British Crown Copyright.
Resumo:
The background to this review paper is research we have performed over recent years aimed at developing a simulation system capable of handling large scale, real world applications implemented in an end-to-end parallel, scalable manner. The particular focus of this paper is the use of a Level Set solid modeling geometry kernel within this parallel framework to enable automated design optimization without topological restrictions and on geometries of arbitrary complexity. Also described is another interesting application of Level Sets: their use in guiding the export of a body-conformal mesh from our basic cut-Cartesian background octree - mesh - this permits third party flow solvers to be deployed. As a practical demonstrations meshes of guaranteed quality are generated and flow-solved for a B747 in full landing configuration and an automated optimization is performed on a cooled turbine tip geometry. Copyright © 2009 by W.N.Dawes.
Resumo:
Optimisation of cooling systems within gas turbine engines is of great interest to engine manufacturers seeking gains in performance, efficiency and component life. The effectiveness of coolant delivery is governed by complex flows within the stator wells and the interaction of main annulus and cooling air in the vicinity of the rim seals. This paper reports the development of a test facility which allows the interaction of cooling air and main gas paths to be measured at conditions representative of those found in modern gas turbine engines. The test facility features a two stage turbine with an overall pressure ratio of approximately 2.6:1. Hot air is supplied to the main annulus using a Rolls-Royce Dart compressor driven by an aero-derivative engine plant. Cooling air can be delivered to the stator wells at multiple locations and at a range of flow rates which cover bulk ingestion through to bulk egress. The facility has been designed with adaptable geometry to enable rapid changes of cooling air path configuration. The coolant delivery system allows swift and accurate changes to the flow settings such that thermal transients may be performed. Particular attention has been focused on obtaining high accuracy data, using a radio telemetry system, as well as thorough through-calibration practices. Temperature measurements can now be made on both rotating and stationary discs with a long term uncertainty in the region of 0.3 K. A gas concentration measurement system has also been developed to obtain direct measurement of re-ingestion and rim seal exchange flows. High resolution displacement sensors have been installed in order to measure hot running geometry. This paper documents the commissioning of a test facility which is unique in terms of rapid configuration changes, non-dimensional engine matching and the instrumentation density and resolution. Example data for each of the measurement systems is presented. This includes the effect of coolant flow rate on the metal temperatures within the upstream cavity of the turbine stator well, the axial displacement of the rotor assembly during a commissioning test, and the effect of coolant flow rate on mixing in the downstream cavity of the stator well. Copyright © 2010 by ASME.
Resumo:
A case study of an aircraft engine manufacturer is used to analyze the effects of management levers on the lead time and design errors generated in an iteration-intensive concurrent engineering process. The levers considered are amount of design-space exploration iteration, degree of process concurrency, and timing of design reviews. Simulation is used to show how the ideal combination of these levers can vary with changes in design problem complexity, which can increase, for instance, when novel technology is incorporated in a design. Results confirm that it is important to consider multiple iteration-influencing factors and their interdependencies to understand concurrent processes, because the factors can interact with confounding effects. The article also demonstrates a new approach to derive a system dynamics model from a process task network. The new approach could be applied to analyze other concurrent engineering scenarios. © The Author(s) 2012.
Resumo:
The Spoken Dialog Challenge 2010 was an exercise to investigate how different spoken dialog systems perform on the same task. The existing Let's Go Pittsburgh Bus Information System was used as a task and four teams provided systems that were first tested in controlled conditions with speech researchers as users. The three most stable systems were then deployed to real callers. This paper presents the results of the live tests, and compares them with the control test results. Results show considerable variation both between systems and between the control and live tests. Interestingly, relatively high task completion for controlled tests did not always predict relatively high task completion for live tests. Moreover, even though the systems were quite different in their designs, we saw very similar correlations between word error rate and task completion for all the systems. The dialog data collected is available to the research community. © 2011 Association for Computational Linguistics.
Resumo:
Calibration of a camera system is a necessary step in any stereo metric process. It correlates all cameras to a common coordinate system by measuring the intrinsic and extrinsic parameters of each camera. Currently, manual calibration of a camera system is the only way to achieve calibration in civil engineering operations that require stereo metric processes (photogrammetry, videogrammetry, vision based asset tracking, etc). This type of calibration however is time-consuming and labor-intensive. Furthermore, in civil engineering operations, camera systems are exposed to open, busy sites. In these conditions, the position of presumably stationary cameras can easily be changed due to external factors such as wind, vibrations or due to an unintentional push/touch from personnel on site. In such cases manual calibration must be repeated. In order to address this issue, several self-calibration algorithms have been proposed. These algorithms use Projective Geometry, Absolute Conic and Kruppa Equations and variations of these to produce processes that achieve calibration. However, most of these methods do not consider all constraints of a camera system such as camera intrinsic constraints, scene constraints, camera motion or varying camera intrinsic properties. This paper presents a novel method that takes all constraints into consideration to auto-calibrate cameras using an image alignment algorithm originally meant for vision based tracking. In this method, image frames are taken from cameras. These frames are used to calculate the fundamental matrix that gives epipolar constraints. Intrinsic and extrinsic properties of cameras are acquired from this calculation. Test results are presented in this paper with recommendations for further improvement.
A holographic projection system with an electrically tuning and continuously adjustable optical zoom
Resumo:
A holographic projection system with optical zoom is demonstrated. By using a combination of a LC lens and an encoded Fresnel lens on the LCoS panel, we can control zoom in a holographic projector. The magnification can be electrically adjusted by tuning the focal length of the combination of the two lenses. The zoom ratio of the holographic projection system can reach 3.7:1 with continuous zoom function. The optical zoom function can decrease the complexity of the holographic projection system.
Resumo:
Optically-fed distributed antenna system (DAS) technology is combined with passive ultra high frequency (UHF) radio frequency identification (RFID). It is shown that RFID signals can be carried on directly modulated radio over fiber links without impacting their performance. It is also shown that a multi-antenna DAS can greatly reduce the number of nulls experienced by RFID in a complex radio environment, increasing the likelihood of successful tag detection. Consequently, optimization of the DAS reduces nulls further. We demonstrate RFID tag reading using a three antenna DAS system over a 20mx6m area, limited by building constraints, where 100% of the test points can be successfully read. The detected signal strength from the tag is also observed to increase by an average of approximately 10dB compared with a conventional switched multi-antenna RFID system. This improvement is achieved at +31dBm equivalent isotropically radiated power (EIRP) from all three antenna units (AUs).
Resumo:
The change in acoustic characteristics in personal computers to console gaming and home entertainment systems with the change in the Graphics Processing Unit (GPU), is presented. The tests are carried out using identical configurations of the software and system hardware. The prime components of the hardware used in the project are central processing unit, motherboard, hard disc drive, memory, power supply, optical drive, and additional cooling system. The results from the measurements taken for each GPU tested are analyzed and compared. The test results are obtained using a photo tachometer and reflective tape adhered to one particular fan blade. The test shows that loudness is a psychoacoustic metric developed by Zwicker and Fastal that aims to quantify how loud a sound is perceived as compared to a standard sound. The acoustic experiment reveals that the inherent noise generation mechanism increases with the increase of the complexity of the cooling solution.
Resumo:
A key challenge in achieving good transient performance of highly boosted engines is the difficulty of accelerating the turbocharger from low air flow conditions (“turbo lag”). Multi-stage turbocharging, electric turbocharger assistance, electric compressors and hybrid powertrains are helpful in the mitigation of this deficit, but these technologies add significant cost and integration effort. Air-assist systems have the potential to be more cost-effective. Injecting compressed air into the intake manifold has received considerable attention, but the performance improvement offered by this concept is severely constrained by the compressor surge limit. The literature describes many schemes for generating the compressed gas, often involving significant mechanical complexity and/or cost. In this paper we demonstrate a novel exhaust assist system in which a reservoir is charged during braking. Experiments have been conducted using a 2.0 litre light-duty Diesel engine equipped with exhaust gas recirculation (EGR) and variable geometry turbine (VGT) coupled to an AC transient dynamometer, which was controlled to mimic engine load during in-gear braking and acceleration. The experimental results confirm that the proposed system reduces the time to torque during the 3rd gear tip-in by around 60%. Such a significant improvement was possible due to the increased acceleration of turbocharger immediately after the tip-in. Injecting the compressed gas into the exhaust manifold circumvents the problem of compressor surge and is the key enabler of the superior performance of the proposed concept.
Resumo:
BGCore reactor analysis system was recently developed at Ben-Gurion University for calculating in-core fuel composition and spent fuel emissions following discharge. It couples the Monte Carlo transport code MCNP with an independently developed burnup and decay module SARAF. Most of the existing MCNP based depletion codes (e.g. MOCUP, Monteburns, MCODE) tally directly the one-group fluxes and reaction rates in order to prepare one-group cross sections necessary for the fuel depletion analysis. BGCore, on the other hand, uses a multi-group (MG) approach for generation of one group cross-sections. This coupling approach significantly reduces the code execution time without compromising the accuracy of the results. Substantial reduction in the BGCore code execution time allows consideration of problems with much higher degree of complexity, such as introduction of thermal hydraulic (TH) feedback into the calculation scheme. Recently, a simplified TH feedback module, THERMO, was developed and integrated into the BGCore system. To demonstrate the capabilities of the upgraded BGCore system, a coupled neutronic TH analysis of a full PWR core was performed. The BGCore results were compared with those of the state of the art 3D deterministic nodal diffusion code DYN3D (Grundmann et al.; 2000). Very good agreement in major core operational parameters including k-eff eigenvalue, axial and radial power profiles, and temperature distributions between the BGCore and DYN3D results was observed. This agreement confirms the consistency of the implementation of the TH feedback module. Although the upgraded BGCore system is capable of performing both, depletion and TH analyses, the calculations in this study were performed for the beginning of cycle state with pre-generated fuel compositions. © 2011 Published by Elsevier B.V.