9 resultados para Surrogate Continuation Aids

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deciding which technology to invest in is a recurring issue for technology managers, and the ability to successfully identify the right technology can be a make or break decision for a company. The effects of globalisation have made this issue even more imperative. Not only do companies have to be competitive by global standards but increasingly they have to source technological capabilities from overseas as well. Technology managers already have a variety of decision aids to draw upon, including valuation tools, for example DCF and real options; decision trees; and technology roadmapping. However little theory exists on when, where, why or even how to best apply particular decision aids. Rather than developing further techniques, this paper reviews the relevance and limitations of existing techniques. This is drawn from an on going research project which seeks to support technology managers in selecting and applying existing decision aids and potentially in the design of future decision aids. It is intended that through improving the selection of decision aids, decision performance can be increased, leading to more effective allocation of resources and hence competitive advantage. (c) 2006 PICMET.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014 by ASME. Two types of foldable rings are designed using polynomial continuation. The first type of ring, when deployed, forms regular polygons with an even number of sides and is designed by specifying a sequence of orientations which each bar must attain at various stages throughout deployment. A design criterion is that these foldable rings must fold with all bars parallel in the stowed position. At first, all three Euler angles are used to specify bar orientations, but elimination is also used to reduce the number of specified Euler angles to two, allowing greater freedom in the design process. The second type of ring, when deployed, forms doubly plane-symmetric (irregular) polygons. The doubly symmetric rings are designed using polynomial continuation, but in this example a series of bar end locations (in the stowed position) is used as the design criterion with focus restricted to those rings possessing eight bars.