24 resultados para Surface-enhanced resonance Raman scattering

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface enhanced Raman scattering (SERS) is a well-established spectroscopic technique that requires nanoscale metal structures to achieve high signal sensitivity. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On page OP 175, U. Steiner and co-workers destabilise polymer trilayer films using an electric field to generate separated micrometre-sized core-shell pillars, which are further modified by selective polymer dissolution to yield polymer core columns surrounded by a rim and micro-volcano rim structures. When coated with gold and decorated with Raman active probes, all three structure types give rise to substantial enhancement in surface-enhanced Raman scattering (SERS). Since this SERS enhancement arises from each of the isolated structures in the array, these surface patterns are an ideal platform for multiplexed SERS detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The highly sensitive and molecule-specific technique of surface-enhanced Raman spectroscopy (SERS) generates high signal enhancements via localized optical fields on nanoscale metallic materials, which can be tuned by manipulation of the surface roughness and architecture on the submicrometer level. We investigate gold-functionalized vertically aligned carbon nanotube forests (VACNTs) as low-cost straightforward SERS nanoplatforms. We find that their SERS enhancements depend on their diameter and density, which are systematically optimized for their performance. Modeling of the VACNT-based SERS substrates confirms consistent dependence on structural parameters as observed experimentally. The created nanostructures span over large substrate areas, are readily configurable, and yield uniform and reproducible SERS enhancement factors. Further fabricated micropatterned VACNTs platforms are shown to deliver multiplexed SERS detection. The unique properties of CNTs, which can be synergistically utilized in VACNT-based substrates and patterned arrays, can thus provide new generation platforms for SERS detection. © 2012 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fano resonances and their strong doping dependence are observed in Raman scattering of single-layer graphene (SLG). As the Fermi level is varied by a back-gate bias, the Raman G band of SLG exhibits an asymmetric line shape near the charge neutrality point as a manifestation of a Fano resonance, whereas the line shape is symmetric when the graphene sample is electron or hole doped. However, the G band of bilayer graphene (BLG) does not exhibit any Fano resonance regardless of doping. The observed Fano resonance can be interpreted as interferences between the phonon and excitonic many-body spectra in SLG. The absence of a Fano resonance in the Raman G band of BLG can be explained in the same framework since excitonic interactions are not expected in BLG. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a straight cylindrical duct with a steady subsonic axial flow and a reacting boundary (e.g. an acoustic lining). The wave modes are separated into ordinary acoustic duct modes, and surface modes confined to a small neighbourhood of the boundary. Many researchers have used a mass-spring-damper boundary model, for which one surface mode has previously been identified as a convective instability; however, we show the stability analysis used in such cases to be questionable. We investigate instead the stability of the surface modes using the Briggs-Bers criterion for a Flügge thin-shell boundary model. For modest frequencies and wavenumbers the thin-shell has an impedance which is effectively that of a mass-spring-damper, although for the large wavenumbers needed for the stability analysis the thin-shell and mass-spring-damper impedances diverge, owing to the thin shell's bending stiffness. The thin shell model may therefore be viewed as a regularization of the mass-spring-damper model which accounts for nonlocally-reacting effects. We find all modes to be stable for realistic thin-shell parameters, while absolute instabilities are demonstrated for extremely thin boundary thicknesses. The limit of vanishing bending stiffness is found to be a singular limit, yielding absolute instabilities of arbitrarily large temporal growth rate. We propose that the problems with previous stability analyses are due to the neglect of something akin to bending stiffness in the boundary model. Our conclusion is that the surface mode previously identified as a convective instability may well be stable in reality. Finally, inspired by Rienstra's recent analysis, we investigate the scattering of an acoustic mode as it encounters a sudden change from a hard-wall to a thin-shell boundary, using a Wiener-Hopf technique. The thin-shell is considered to be clamped to the hard-wall. The acoustic mode is found to scatter into transmitted and reflected acoustic modes, and surface modes strongly linked to the solid waves in the boundary, although no longitudinal or transverse waves within the boundary are excited. Examples are provided that demonstrate total transmission, total reflection, and a combination of the two. This thin-shell scattering problem is preferable to the mass-spring-damper scattering problem presented by Rienstra, since the thin-shell problem is fully determined and does not need to appeal to a Kutta-like condition or the inclusion of an instability in order to avoid a surface-streamline cusp at the boundary change.