9 resultados para Subtraction
em Cambridge University Engineering Department Publications Database
Resumo:
Vision based tracking can provide the spatial location of construction entities such as equipment, workers, and materials in large scale, congested construction sites. It tracks entities in video streams by inferring their locations based on the entities’ visual features and motion histories. To initiate the process, it is necessary to determine the pixel areas corresponding to the construction entities to be tracked in the following consecutive video frames. In order to fully automate the process, an automated way of initialization is needed. This paper presents the method for construction worker detection which can automatically recognize and localize construction workers in video frames. The method first finds the foreground areas of moving objects using a background subtraction method. Within these foreground areas, construction workers are recognized based on the histogram of oriented gradients (HOG) and histogram of the HSV colors. HOG’s have proved to work effectively for detection of people, and the histogram of HSV colors helps differentiate between pedestrians and construction workers wearing safety vests. Preliminary experiments show that the proposed method has the potential to automate the initialization process of vision based tracking.
Resumo:
Vision-based object detection has been introduced in construction for recognizing and locating construction entities in on-site camera views. It can provide spatial locations of a large number of entities, which is beneficial in large-scale, congested construction sites. However, even a few false detections prevent its practical applications. In resolving this issue, this paper presents a novel hybrid method for locating construction equipment that fuses the function of detection and tracking algorithms. This method detects construction equipment in the video view by taking advantage of entities' motion, shape, and color distribution. Background subtraction, Haar-like features, and eigen-images are used for motion, shape, and color information, respectively. A tracking algorithm steps in the process to make up for the false detections. False detections are identified by catching drastic changes in object size and appearance. The identified false detections are replaced with tracking results. Preliminary experiments show that the combination with tracking has the potential to enhance the detection performance.
Resumo:
Monitoring the location of resources on large scale, congested, outdoor sites can be performed more efficiently with vision tracking, as this approach does not require any pre-tagging of resources. However, the greatest impediment to the use of vision tracking in this case is the lack of detection methods that are needed to automatically mark the resources of interest and initiate the tracking. This paper presents such a novel method for construction worker detection that localizes construction workers in video frames. The proposed method exploits motion, shape, and color cues to narrow down the detection regions to moving objects, people, and finally construction workers, respectively. The three cues are characterized by using background subtraction, the histogram of oriented gradients (HOG), and the HSV color histogram. The method has been tested on videos taken in various environments. The results demonstrate its suitability for automatic initialization of vision trackers.
Resumo:
Localization of chess-board vertices is a common task in computer vision, underpinning many applications, but relatively little work focusses on designing a specific feature detector that is fast, accurate and robust. In this paper the `Chess-board Extraction by Subtraction and Summation' (ChESS) feature detector, designed to exclusively respond to chess-board vertices, is presented. The method proposed is robust against noise, poor lighting and poor contrast, requires no prior knowledge of the extent of the chess-board pattern, is computationally very efficient, and provides a strength measure of detected features. Such a detector has significant application both in the key field of camera calibration, as well as in Structured Light 3D reconstruction. Evidence is presented showing its robustness, accuracy, and efficiency in comparison to other commonly used detectors both under simulation and in experimental 3D reconstruction of flat plate and cylindrical objects
Resumo:
The presence of liquid fuel inside the engine cylinder is believed to be a strong contributor to the high levels of hydrocarbon emissions from spark ignition (SI) engines during the warm-up period. Quantifying and determining the fate of the liquid fuel that enters the cylinder is the first step in understanding the process of emissions formation. This work uses planar laser induced fluorescence (PLIF) to visualize the liquid fuel present in the cylinder. The fluorescing compounds in indolene, and mixtures of iso-octane with dopants of different boiling points (acetone and 3-pentanone) were used to trace the behavior of different volatility components. Images were taken of three different planes through the engine intersecting the intake valve region. A closed valve fuel injection strategy was used, as this is the strategy most commonly used in practice. Background subtraction and masking were both performed to reduce the effect of any spurious fluorescence. The images were analyzed on both a time and crank angle (CA) basis, showing the time of maximum liquid fuel present in the cylinder and the effect of engine events on the inflow of liquid fuel. The results show details of the liquid fuel distribution as it enters the engine as a function of crankangle degree, volatility and location in the cylinder. A. semi-quantitative analysis based on the integration of the image intensities provides additional information on the temporal distribution of the liquid fuel flow. © 1998 Society of Automotive Engineers, Inc.
Resumo:
Localization of chess-board vertices is a common task in computer vision, underpinning many applications, but relatively little work focusses on designing a specific feature detector that is fast, accurate and robust. In this paper the 'Chess-board Extraction by Subtraction and Summation' (ChESS) feature detector, designed to exclusively respond to chess-board vertices, is presented. The method proposed is robust against noise, poor lighting and poor contrast, requires no prior knowledge of the extent of the chess-board pattern, is computationally very efficient, and provides a strength measure of detected features. Such a detector has significant application both in the key field of camera calibration, as well as in structured light 3D reconstruction. Evidence is presented showing its superior robustness, accuracy, and efficiency in comparison to other commonly used detectors, including Harris & Stephens and SUSAN, both under simulation and in experimental 3D reconstruction of flat plate and cylindrical objects. © 2013 Elsevier Inc. All rights reserved.