4 resultados para Structural evaluation
em Cambridge University Engineering Department Publications Database
Resumo:
The safety of post-earthquake structures is evaluated manually through inspecting the visible damage inflicted on structural elements. This process is time-consuming and costly. In order to automate this type of assessment, several crack detection methods have been created. However, they focus on locating crack points. The next step, retrieving useful properties (e.g. crack width, length, and orientation) from the crack points, has not yet been adequately investigated. This paper presents a novel method of retrieving crack properties. In the method, crack points are first located through state-of-the-art crack detection techniques. Then, the skeleton configurations of the points are identified using image thinning. The configurations are integrated into the distance field of crack points calculated through a distance transform. This way, crack width, length, and orientation can be automatically retrieved. The method was implemented using Microsoft Visual Studio and its effectiveness was tested on real crack images collected from Haiti.
Resumo:
Post-earthquake structural safety evaluations are currently performed manually by a team of certified inspectors and/or structural engineers. This process is time-consuming and costly, keeping owners and occupants from returning to their businesses and homes. Automating these evaluations would enable faster, and potentially more consistent, relief and response processes. In order to do this, the detection of exposed reinforcing steel is of utmost significance. This paper presents a novel method of detecting exposed reinforcement in concrete columns for the purpose of advancing practices of structural and safety evaluation of buildings after earthquakes. Under this method, the binary image of the reinforcing area is first isolated using a state-of-the-art adaptive thresholding technique. Next, the ribbed regions of the reinforcement are detected by way of binary template matching. Finally, vertical and horizontal profiling are applied to the processed image in order to filter out any superfluous pixels and take into consideration the size of reinforcement bars in relation to that of the structural element within which they reside. The final result is the combined binary image disclosing only the regions containing rebar overlaid on top of the original image. The method is tested on a set of images from the January 2010 earthquake in Haiti. Preliminary test results convey that most exposed reinforcement could be properly detected in images of moderately-to-severely damaged concrete columns.