9 resultados para Stress degradation studies

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of a study of the wear of candidate heat exchanger tube materials for use in fluidized bed combustors, two similar laboratory-scale rigs have been built and characterized. Specimens of selected alloys are carried on counter-rotating rotors immersed in a fluidized bed, and are exposed to particle impact velocities of up to approximately 3 ms-1 at temperatures up to 1000°C. The performance of this design of apparatus has been investigated in detail. The effects of several experimental variables have been studied, including angle of particle impact, specimen speed, position of the rotor within the fluidized bed, duration of exposure, bed material particle size, degradation of the bed material, degree of fluidization of the bed, and size of specimen. In many cases the results obtained with steel specimens at elevated temperatures are similar to those observed with polymeric specimens at low temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal based thermal microactuators normally have lower operation temperatures than those of Si-based ones; hence they have great potential for applications. However, metal-based thermal actuators easily suffer from degradation such as plastic deformation. In this study, planar thermal actuators were made by a single mask process using electroplated nickel as the active material, and their thermal degradation has been studied. Electrical tests show that the Ni-based thermal actuators deliver a maximum displacement of ∼20μm at an average temperature of ∼420°C, much lower than that of Si-based microactuators. However, the displacement strongly depends on the frequency and peak voltage of the pulse applied. Back bending was clearly observed at a maximum temperature as low as 240°C. Both forward and backward displacements increase with increasing the temperature up to ∼450°C, and then decreases with power. Scanning electron microscopy observation clearly showed that Ni structure deforms and reflows at power above 50mW. The compressive stress is believed to be responsible for Ni piling-up (creep), while the tensile stress upon removing the pulse current is responsible for necking at the hottest section of the device. Energy dispersive X-ray diffraction analysis revealed severe oxidation of the Ni-structure induced by Joule-heating of the current.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At medium to high frequencies the dynamic response of a built-up engineering system, such as an automobile, can be sensitive to small random manufacturing imperfections. Ideally the statistics of the system response in the presence of these uncertainties should be computed at the design stage, but in practice this is an extremely difficult task. In this paper a brief review of the methods available for the analysis of systems with uncertainty is presented, and attention is then focused on two particular "non- parametric" methods: statistical energy analysis (SEA), and the hybrid method. The main governing equations are presented, and a number of example applications are considered, ranging from academic benchmark studies to industrial design studies. © 2009 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical degradation is thought to be one of the causes of capacity fade within Lithium-Ion batteries. In this work we develop a coupled stress-diffusion model for idealized spherical storage particles, which is analogous to the development of thermal strains. We then non-dimensionalize the model and identify three important parameters that control the development of stress within these particles. We can therefore use a wide number of values for these parameters to make predictions about the stress responses of different materials. The maximum stress developed within the particle for different values of these parameters are plotted as stress maps. A two dimensional model of a battery was then developed, in order to study the effect of particle morphology. Copyright © 2012 by ASME.