17 resultados para Stone, Merlin
em Cambridge University Engineering Department Publications Database
Resumo:
Stone masonry spires are vulnerable to seismic loading. Computational methods are often used to predict the dynamic linear elastic response of masonry towers and spires, but this approach is only applicable until the first masonry joint begins to open, limiting the ability to predict collapse. In this paper, analytical modeling is used to investigate the uplift, rocking and collapse of stone spires. General equations for static equilibrium of the spire under lateral acceleration are first presented, and provide a reasonable lower bound for predicting collapse. The dynamic response is then considered through elastic modal analysis and rigid body rocking. Together, these methods are used to provide uplift curves and single impulse overturning collapse curves for a complete range of possible spire geometries. Results are used to evaluate the historic collapse of two specific stone spires. © 2012 Elsevier Ltd.
Resumo:
Analytical methods provide a global context from which to understand the dynamics of stone spires, but computational and experimental methods are useful to predict more specific behavior of multiple block structures. In this paper, the spire of St. Mary Magdalene church in Waltham-on-the-Wolds, UK, which was damaged in the 2008 Lincolnshire Earthquake, is used as a case study. Both a physical model and a discrete element computational model of the spire were created and used to investigate collapse under constant horizontal acceleration, impulse base motion, and earthquake ground motion. Results indicate that the global behavior compares well with analytical modeling, but local block displacements evident in DEM and experimental results also reduce the stability of the structure. In this context, the observed damage to St. Mary Magdalene church is evaluated and discussed. © 2012 Elsevier Ltd.
Resumo:
The use of anti-roll bars to provide additional roll stiffness and therefore to reduce the trade-off between ride and rollover performance has previously been studied. However, little work has been carried out to investigate the benefits of a switchable roll stiffness. Such a semi-active anti-roll system has the ability to have a low roll stiffness during straight-ahead driving for improved ride performance and high roll stiffness during cornering for improved roll performance. Modelling of such a system is conducted and the model is validated against a semi-active anti-roll system fitted to an experimental vehicle. Experimental and theoretical investigations are used to investigate the performance of such a system with several different strategies employed to switch to the high-stiffness state. The use of an air suspension on the vehicle to roll into corners is also investigated, as is the possibility of exploiting the road layout by allowing the vehicle to be in a low-roll-stiffness configuration during a corner, and then to switch to the high-roll-stiffness configuration midcorner, hence 'locking in' a roll angle. The best rollover performance improvement that was achieved was 12.5 per cent. © IMechE 2008.
Resumo:
When considering the potential uptake and utilization of technology management tools by industry, it must be recognized that companies face the difficult challenges of selecting, adopting and integrating individual tools into a toolkit that must be implemented within their current organizational processes and systems. This situation is compounded by the lack of sound advice on integrating well-founded individual tools into a robust toolkit that has the necessary degree of flexibility such that they can be tailored for application to specific problems faced by individual organizations. As an initial stepping stone to offering a toolkit with empirically proven utility, this paper provides a conceptual foundation to the development of toolkits by outlining an underlying philosophical position based on observations from multiple research and commercial collaborations with industry. This stance is underpinned by a set of operationalized principles that can offer guidance to organizations when deciding upon the appropriate form, functions and features that should be embodied by any potential tool/toolkit. For example, a key objective of any tool is to aid decision-making and a core set of powerful, flexible, scaleable and modular tools should be sufficient to allow users to generate, explore, shape and implement possible solutions across a wide array of strategic issues. From our philosophical stance, the preferred mode of engagement is facilitated workshops with a participatory process that enables multiple perspectives and structures the conversation through visual representations in order to manage the cognitive load in the collaborative environment. The generic form of the tools should be configurable for the given context and utilized in a lightweight manner based on the premise of start small and iterate fast. © 2011 IEEE.