19 resultados para Step-stress accelerated life testing

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a robust SOI-CMOS ethanol sensor based on a tungsten-doped lanthanum iron oxide sensing material. The device shows response to gas, has low power consumption, good uniformity, high temperature stability and can be manufactured at low cost and with integrated circuitry. The platform is a tungsten-based CMOS micro-hotplate that has been shown to be stable for over two thousand hours at a high temperature (600°C) in a form of accelerated life test. The tungsten-doped lanthanum iron oxide was deposited on the micro-hotplate as a slurry with terpineol using a syringe, dried and annealed. Preliminary gas testing was done and the material shows response to ethanol vapour. These results are promising and we believe that this combination of a robust CMOS micro-hotplate and a good sensing material can form the basis for a commercial CMOS gas sensor. © 2011 Published by Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Brittleness is the unintended, but inevitable consequence of producing a transparent ceramic for architectural applications such as the soda-lime glass. Its tensile strength is particularly sensitive to surface imperfections, such as that from natural weathering and malicious damage. Although a significant amount of testing of new glass has been carried out, there has been surprisingly little testing on weathered glass. Due to the variable nature of the causes of surface damage, the lack of data on weathered glass leads to a considerable degree of uncertainty in the long-term strength of exposed glass. This paper presents the results of recent tests on weathered annealed glass which has been exposed to natural weathering for more than 20 years. The tests include experimental investigations using the co-axial ring setup as well as optical and atomic force microscopy of the glass surfaces. The experimental data from these tests is subsequently used to extend existing fracture mechanics-based models to predict the strength of weathered glass. It is shown that using an automated approach based directly on finite element analysis results can give an increase in effective design strength in the order of 70 to 100% when compared to maximum stress methods. It is also shown that by combining microscopy and strength test results, it is possible to quantitatively characterise the damage on glass surfaces.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article presents results from conventional creep tests (CCT) and two accelerated test methods (the stepped isothermal method (SIM) and the stepped isostress method (SSM)) to determine the creep and creep-rupture behavior of two different aramid fibers, Kevlar 49 and Technora. CCT are regarded as the true behavior of the yarn, but they are impractical for long-term use where failures are expected only after many years. All the tests were carried out on the same batches of yarns, and using the same clamping arrangements, so the tests should be directly comparable. For both materials, SIM testing gives good agreement with CCT and gave stress-rupture lifetimes that followed the same trend. However, there was significant variation for SSM testing, especially when testing Technora fibers. The results indicate that Kevlar has a creep strain capacity that is almost independent of stress, whereas Technora shows a creep strain capacity that depends on stress. Its creep strain capacity is approximately two to three times that of Kevlar 49. The accelerated test methods give indirect estimates for the activation energy and the activation volume of the fibers. The activation energy for Technora is about 20% higher than that for Kevlar, meaning that it is less sensitive to the effects of increasing temperature. The activation volume for both materials was similar, and in both cases, stress dependent. Copyright © 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relevance of the effective stress intensity range to crack growth is considered for constant and for variable amplitude loading. The accelerated and retarded growth associated with simple programmed loadings is reported for two steels and an aluminium alloy. The load interaction effects are due to several competing mechanisms, and not due to the single, popular mechanism of crack closure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A vast body of experimental data has been accumulated on the constant amplitude crack growth response of structural metals in moist laboratory air. Usually the data is presented as plots of crack growth rate, da/dN, against stress intensity range, DELTA K. In order to extrapolate this data to fatigue crack growth in more active or more inert environments, to crack growth under variable amplitude loading, or to crack growth under multi-axial or mixed mode loading, the mechanisms of crack advance and crack closure should be considered. This paper briefly reviews the crack closure phenomenon and discusses the dominant causes of accelerated and retarded growth under changes in environment or type of loading. It is argued that simple constant amplitude data is often surprisingly accurate when used to predict crack growth in more complex situations. However, there are some cases where constant amplitude data lead to dangerously non-conservative predictions of fatigue life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flare tips are essential for safety. Maintenance is difficult and costly. Flare tips are subjected to high combustion temperatures, thermal cycling, oxidation and marine corrosion. Following a number of flare tip failures an in depth study by Imperial College was carried out into the failure of a flare tip from a UK platform, looking for service life improvement. Materials selection and design solutions were considered. The study considered alternative materials and concluded that materials selection was the smaller part of the answer; design changes can double service life. This study used failure investigation, high temperature experimental and thermo-mechanical modelling analysis. The modelling process simulated two common flaring conditions and correctly predicted the observed failure of initiation and crack propagation from holes used to bolt on flame stabilizing plates to the top of the flare. The calculated thermal stress and strains enabled the low cycle fatigue life and minimum creep life to be predicted. It was concluded that service life could be improved by replacing Incoloy alloy 800HT (UNS N08800) with Inconel alloy 625 (UNS N06625), an alloy with attractive mechanical properties and improved high temperature corrosion resistance. Repositioning or eliminating bolt holes can double service life. Copyright 2008, Society of Petroleum Engineers.