3 resultados para Steel framing (Building)
em Cambridge University Engineering Department Publications Database
Resumo:
In this paper we propose rhetoric as a valuable yet underdeveloped alternative paradigm for examining IT diffusion. Building on recent developments of computerization movements theory, our rhetorical approach proposes that two central elements of the theory, framing and ideology, rather than being treated as separate can be usefully integrated. We suggest that IT diffusion can be usefully explored through examining the interrelationship of the deep structures underlying ideology and the type and sequence of rhetorical claims underpinning actors’ framing strategies. Our theoretical developments also allow us to better understand competing discourses influencing the diffusion process. These discourses reflect the ideologies and shape the framing strategies of actors in the broader field context. We illuminate our theoretical approach by drawing on the history of the diffusion of free and open source software.
Resumo:
Half of the world's annual production of steel is used in constructing buildings and infrastructure. Producing this steel causes significant amounts of carbon dioxide to be released into the atmosphere. Climate change experts recommend this amount be halved by 2050; however steel demand is predicted to have doubled by this date. As process efficiency improvements will not reach the required 75% reduction in emissions per unit steel output, new methods must be examined to deliver service using less steel production. To apply such methods successfully to construction, it must first be known where steel is used currently within the industry. This information is not available so a methodology is proposed to estimate it from known data. Results are presented for steel flows by product for ten construction sectors for both the UK and the world in 2006. An estimate for steel use within a 'typical' building is also published for the first time. Industrial buildings and utility infrastructure are identified as the largest end-uses of steel, while superstructure is confirmed as the main use of steel in a building. The results highlight discrepancies in previous steel estimates and life-cycle assessments, and will inform future research on lowering demand for steel, hence reducing carbon emissions. © 2012 Elsevier B.V. All rights reserved.