67 resultados para State-based Specifications

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fundamental principle behind the development of SCC has been the nanoscale tailoring of cementitious matrices. Although self-compacting concrete (SCC) is currently used in many countries, there is a fundamental lack of the intrinsic durability of the material itself. The scope of the current paper is to present the outcomes of a research study on some principal indicators (porosity and capillary absorption) that define the durability of SCC, and how these are compared with the corresponding parameters of conventional concrete. Furthermore, this paper investigates the addition of industrial by-products, such as fly-ash or lime powder, to SCC mixtures and their effect on the durability indicators.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tendency to make unhealthy choices is hypothesized to be related to an individual's temporal discount rate, the theoretical rate at which they devalue delayed rewards. Furthermore, a particular form of temporal discounting, hyperbolic discounting, has been proposed to explain why unhealthy behavior can occur despite healthy intentions. We examine these two hypotheses in turn. We first systematically review studies which investigate whether discount rates can predict unhealthy behavior. These studies reveal that high discount rates for money (and in some instances food or drug rewards) are associated with several unhealthy behaviors and markers of health status, establishing discounting as a promising predictive measure. We secondly examine whether intention-incongruent unhealthy actions are consistent with hyperbolic discounting. We conclude that intention-incongruent actions are often triggered by environmental cues or changes in motivational state, whose effects are not parameterized by hyperbolic discounting. We propose a framework for understanding these state-based effects in terms of the interplay of two distinct reinforcement learning mechanisms: a "model-based" (or goal-directed) system and a "model-free" (or habitual) system. Under this framework, while discounting of delayed health may contribute to the initiation of unhealthy behavior, with repetition, many unhealthy behaviors become habitual; if health goals then change, habitual behavior can still arise in response to environmental cues. We propose that the burgeoning development of computational models of these processes will permit further identification of health decision-making phenotypes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Effective dialogue management is critically dependent on the information that is encoded in the dialogue state. In order to deploy reinforcement learning for policy optimization, dialogue must be modeled as a Markov Decision Process. This requires that the dialogue statemust encode all relevent information obtained during the dialogue prior to that state. This can be achieved by combining the user goal, the dialogue history, and the last user action to form the dialogue state. In addition, to gain robustness to input errors, dialogue must be modeled as a Partially Observable Markov Decision Process (POMDP) and hence, a distribution over all possible states must be maintained at every dialogue turn. This poses a potential computational limitation since there can be a very large number of dialogue states. The Hidden Information State model provides a principled way of ensuring tractability in a POMDP-based dialogue model. The key feature of this model is the grouping of user goals into partitions that are dynamically built during the dialogue. In this article, we extend this model further to incorporate the notion of complements. This allows for a more complex user goal to be represented, and it enables an effective pruning technique to be implemented that preserves the overall system performance within a limited computational resource more effectively than existing approaches. © 2011 ACM.