8 resultados para Standardized residuals
em Cambridge University Engineering Department Publications Database
Resumo:
We have constructed plasmids to be used for in vitro signature-tagged mutagenesis (STM) of Campylobacter jejuni and used these to generate STM libraries in three different strains. Statistical analysis of the transposon insertion sites in the C. jejuni NCTC 11168 chromosome and the plasmids of strain 81-176 indicated that their distribution was not uniform. Visual inspection of the distribution suggested that deviation from uniformity was not due to preferential integration of the transposon into a limited number of hot spots but rather that there was a bias towards insertions around the origin. We screened pools of mutants from the STM libraries for their ability to colonize the ceca of 2-week-old chickens harboring a standardized gut flora. We observed high-frequency random loss of colonization proficient mutants. When cohoused birds were individually inoculated with different tagged mutants, random loss of colonization-proficient mutants was similarly observed, as was extensive bird-to-bird transmission of mutants. This indicates that the nature of campylobacter colonization in chickens is complex and dynamic, and we hypothesize that bottlenecks in the colonization process and between-bird transmission account for these observations.
Resumo:
Characterization of polymer nanocomposites by electron microscopy has been attempted since last decade. Main drives for this effort were analysis of dispersion and alignment of fillers in the matrix. Sample preparation, imaging modes and irradiation conditions became particularly challenging due to the small dimension of the fillers and also to the mechanical and conductive differences between filler and matrix. To date, no standardized dispersion and alignment process or characterization procedures exist in the trade. Review of current state of the art on characterization of polymer nanocomposites suggests that the most innovative electron and ion beam microscopy has not yet been deployed in this material system. Additionally, recently discovered functionalities of these composites, such as electro and photoactuation are amenable to the investigation of the atomistic phenomena by in situ transmission electron microscopy. The possibility of using innovative thinning techniques is presented. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
In this paper we examine the use of electronic patient records (EPR) by clinical specialists in their development of multidisciplinary care for diagnosis and treatment of breast cancer. We develop a practice theory lens to investigate EPR use across multidisciplinary team practice. Our findings suggest that there are oppositional tendencies towards diversity in EPR use and unity which emerges across multidisciplinary work, and this influences the outcomes of EPR use. The value of this perspective is illustrated through the analysis of a year-long, longitudinal case study of a multidisciplinary team of surgeons, oncologists, pathologists, radiologists, and nurse specialists adopting a new EPR. Each group adapted their use of the EPR to their diverse specialist practices, but they nonetheless orientated their use of the EPR to each others' practices sufficiently to support unity in multidisciplinary teamwork. Multidisciplinary practice elements were also reconfigured in an episode of explicit negotiations, resulting in significant changes in EPR use within team meetings. Our study contributes to the growing literature that questions the feasibility and necessity of achieving high levels of standardized, uniform health information technology use in healthcare.
Resumo:
The different types of outsourcing and the management requirements for each of them are discussed. An outsourcing has a high strategic importance to the buying company when it is aligned with the organization's long term strategies and when its results are either positive or negative. Functional outsourcings are characterized by both low strategic importance and financial impact, and the products/services that fall in this category belong to support activities which are highly standardized. Leverage outsourcings are those that have a low strategic importance, but high financial impact to the outsourcer, and they concentrate on operational aspects, leaving strategic issues.
Resumo:
Superconducting Fault Current Limiters (SFCLs) are able to reduce fault currents to an acceptable value, reducing potential mechanical and thermal damage to power system apparatus and allowing more flexibility in power system design and operation. The device can also help avoid replacing circuit breakers whose capacity has been exceeded. Due to limitations in current YBCO thin film manufacturing processes, it is not easy to obtain one large thin film that satisfies the specifications for high voltage and large current applications. The combination of standardized thin films has merit to reduce costs and maintain device quality, and it is necessary to connect these thin films in different series and parallel configurations in order to meet these specifications. In this paper, the design of a resistive type SFCL using parallel-connected YBCO thin films is discussed, including the role of a parallel resistor and the influence of individual thin film characteristics, based on both theory and experimental results. © 2009 IEEE.
Resumo:
The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. Examples include surface cracks detection, assessment of fire-damaged mortar, fatigue evaluation of asphalt mixes, aggregate shape measurements, velocimentry, vehicles detection, pore size distribution in geotextiles, damage detection and others. This capability is a product of the technological breakthroughs in the area of Image and Video Processing that has allowed for the development of a large number of digital imaging applications in all industries ranging from the well established medical diagnostic tools (magnetic resonance imaging, spectroscopy and nuclear medical imaging) to image searching mechanisms (image matching, content based image retrieval). Content based image retrieval techniques can also assist in the automated recognition of materials in construction site images and thus enable the development of reliable methods for image classification and retrieval. The amount of original imaging information produced yearly in the construction industry during the last decade has experienced a tremendous growth. Digital cameras and image databases are gradually replacing traditional photography while owners demand complete site photograph logs and engineers store thousands of images for each project to use in a number of construction management tasks. However, construction companies tend to store images without following any standardized indexing protocols, thus making the manual searching and retrieval a tedious and time-consuming effort. Alternatively, material and object identification techniques can be used for the development of automated, content based, construction site image retrieval methodology. These methods can utilize automatic material or object based indexing to remove the user from the time-consuming and tedious manual classification process. In this paper, a novel material identification methodology is presented. This method utilizes content based image retrieval concepts to match known material samples with material clusters within the image content. The results demonstrate the suitability of this methodology for construction site image retrieval purposes and reveal the capability of existing image processing technologies to accurately identify a wealth of materials from construction site images.
Resumo:
An accurate description of sound propagation in a duct is important to obtain the sound power radiating from a source in both near and far fields. A technique has been developed and applied to decompose higher-order modes of sound emitted into a duct. Traditional experiments and theory based on two-sensor methods are limited to the plane-wave contribution to the sound field at low frequency. Due to the increase in independent measurements required, a computational method has been developed to simulate sensitivities of real measurements (e.g., noise) and optimize the set-up. An experimental rig has been constructed to decompose the first two modes using six independent measurements from surface, flush-mounted microphones. Experiments were initially performed using a loudspeaker as the source for validation. Subsequently, the sound emitted by a mixed-flow fan has been investigated and compared to measurements made in accordance with the internationally standardized in-duct fan measurement method. This method utilizes large anechoic terminations and a procedure involving averaging over measurements in space and time to account for the contribution from higher-order modes. The new method does not require either of these added complications and gives detail about the underlying modal content of the emitted sound.
Resumo:
Cellular behavior is strongly influenced by the architecture and pattern of its interfacing extracellular matrix (ECM). For an artificial culture system which could eventually benefit the translation of scientific findings into therapeutic development, the system should capture the key characteristics of a physiological microenvironment. At the same time, it should also enable standardized, high throughput data acquisition. Since an ECM is composed of different fibrous proteins, studying cellular interaction with individual fibrils will be of physiological relevance. In this study, we employ near-field electrospinning to create ordered patterns of collagenous fibrils of gelatin, based on an acetic acid and ethyl acetate aqueous co-solvent system. Tunable conformations of micro-fibrils were directly deposited onto soft polymeric substrates in a single step. We observe that global topographical features of straight lines, beads-on-strings, and curls are dictated by solution conductivity; whereas the finer details such as the fiber cross-sectional profile are tuned by solution viscosity. Using these fibril constructs as cellular assays, we study EA.hy926 endothelial cells' response to ROCK inhibition, because of ROCK's key role in the regulation of cell shape. The fibril array was shown to modulate the cellular morphology towards a pre-capillary cord-like phenotype, which was otherwise not observed on a flat 2-D substrate. Further facilitated by quantitative analysis of morphological parameters, the fibril platform also provides better dissection in the cells' response to a H1152 ROCK inhibitor. In conclusion, the near-field electrospun fibril constructs provide a more physiologically-relevant platform compared to a featureless 2-D surface, and simultaneously permit statistical single-cell image cytometry using conventional microscopy systems. The patterning approach described here is also expected to form the basics for depositing other protein fibrils, seen among potential applications as culture platforms for drug screening.