263 resultados para Stabilization techniques
em Cambridge University Engineering Department Publications Database
Resumo:
A multi-disciplinary team based at Heriot-Watt University and other Universities has been set up to tackle the design and manufacturing of lab-on-a-chip for industries as one of the demonstrators of the EPSRC Grand Challenge project "3D-Mintegration". The team focuses on the analysis of foetal genetic material extracted from maternal blood as a smart alternative to invasive prenatal testing such as amniocentesis. The first module of the microsystem envisaged achieves a separation of blood cells from plasma. This system permits the testing of different manufacturing techniques.
Resumo:
An investigation concerning suitable termination techniques for 4H-SiC trench JFETs is presented. Field plates, p+ floating rings and junction termination extension techniques are used to terminate 1.2kV class PiN diodes. The fabricated PiN diodes evaluated here have a similar design to trench JFETs. Therefore, the conclusions for PiN diodes can be applied to JFET structures as well. Numerical simulations are also used to illustrate the effect of the terminations on the diodes' blocking mode behaviour.
Resumo:
While it is well known that it is possible to determine the effective flexoelectric coefficient of nematic liquid crystals using hybrid cells [1], this technique can be difficult due to the necessity of using a D.C. field. We have used a second method[2], requiring an A.C. field, to determine this parameter and here we compare the two techniques. The A.C. method employs the linear flexoelectrically induced linear electro-optic switching mechanism observed in chiral nematics. In order to use this second technique a chiral nematic phase is induced in an achiral nematic by the addition of a small amount of chiral additive (∼3% concentration w/w) to give helix pitch lengths of typically 0.5-1.0 μm. We note that the two methods can be used interchangeably, since they produce similar results, and we conclude with a discussion of their relative merits.
Resumo:
Capacitive parasitic feedthrough is an impediment that is inherent to all electrically interfaced micron scale resonant devices, resulting in increased challenges to their integration in more complex circuits, particularly as devices are scaled to operate at higher frequencies for RF applications. In this paper, a technique to cancel the undesirable effects of capacitive feedthrough that was previously proposed is here developed for an on-chip implementation. The method reported in this paper benefits from the simplicity of its implementation, and its effectiveness is demonstrated in this paper. This technique is demonstrated for two disk-plate resonators that have been excited in the wine glass mode at 5.4 MHz, though applicable to almost any electrically interfaced resonator. Measurements of the electrical transmission from these resonators show that the magnitude of the frequency response of the system is enhanced by up to 19 dB, while the phase is found to shift through a full 180° about the resonant frequency. This method is proposed as a useful addition to other techniques for enhancing the measured response of electrostatic micromechanical resonators. © 2009 Elsevier B.V. All rights reserved.
Modelling and simulation techniques for supporting healthcare decision making: a selection framework