28 resultados para Stability Boundary

em Cambridge University Engineering Department Publications Database


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The global stability of confined uniform density wakes is studied numerically, using two-dimensional linear global modes and nonlinear direct numerical simulations. The wake inflow velocity is varied between different amounts of co-flow (base bleed). In accordance with previous studies, we find that the frequencies of both the most unstable linear and the saturated nonlinear global mode increase with confinement. For wake Reynolds number Re = 100 we find the confinement to be stabilising, decreasing the growth rate of the linear and the saturation amplitude of the nonlinear modes. The dampening effect is connected to the streamwise development of the base flow, and decreases for more parallel flows at higher Re. The linear analysis reveals that the critical wake velocities are almost identical for unconfined and confined wakes at Re ≈ 400. Further, the results are compared with literature data for an inviscid parallel wake. The confined wake is found to be more stable than its inviscid counterpart, whereas the unconfined wake is more unstable than the inviscid wake. The main reason for both is the base flow development. A detailed comparison of the linear and nonlinear results reveals that the most unstable linear global mode gives in all cases an excellent prediction of the initial nonlinear behaviour and therefore the stability boundary. However, the nonlinear saturated state is different, mainly for higher Re. For Re = 100, the saturated frequency differs less than 5% from the linear frequency, and trends regarding confinement observed in the linear analysis are confirmed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the linear global stability of the boundary-layer flow over a rotating sphere. Our results suggest that a self-excited linear global mode can exist when the sphere rotates sufficiently fast, with properties fixed by the flow at latitudes between approximately 55°-65° from the pole (depending on the rotation rate). A neutral curve for global linear instabilities is presented with critical Reynolds number consistent with existing experimentally measured values for the appearance of turbulence. The existence of an unstable linear global mode is in contrast to the literature on the rotating disk, where it is expected that nonlinearity is required to prompt the transition to turbulence. Despite both being susceptible to local absolute instabilities, we conclude that the transition mechanism for the rotating-sphere flow may be different to that for the rotating disk. © 2014 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a straight cylindrical duct with a steady subsonic axial flow and a reacting boundary (e.g. an acoustic lining). The wave modes are separated into ordinary acoustic duct modes, and surface modes confined to a small neighbourhood of the boundary. Many researchers have used a mass-spring-damper boundary model, for which one surface mode has previously been identified as a convective instability; however, we show the stability analysis used in such cases to be questionable. We investigate instead the stability of the surface modes using the Briggs-Bers criterion for a Flügge thin-shell boundary model. For modest frequencies and wavenumbers the thin-shell has an impedance which is effectively that of a mass-spring-damper, although for the large wavenumbers needed for the stability analysis the thin-shell and mass-spring-damper impedances diverge, owing to the thin shell's bending stiffness. The thin shell model may therefore be viewed as a regularization of the mass-spring-damper model which accounts for nonlocally-reacting effects. We find all modes to be stable for realistic thin-shell parameters, while absolute instabilities are demonstrated for extremely thin boundary thicknesses. The limit of vanishing bending stiffness is found to be a singular limit, yielding absolute instabilities of arbitrarily large temporal growth rate. We propose that the problems with previous stability analyses are due to the neglect of something akin to bending stiffness in the boundary model. Our conclusion is that the surface mode previously identified as a convective instability may well be stable in reality. Finally, inspired by Rienstra's recent analysis, we investigate the scattering of an acoustic mode as it encounters a sudden change from a hard-wall to a thin-shell boundary, using a Wiener-Hopf technique. The thin-shell is considered to be clamped to the hard-wall. The acoustic mode is found to scatter into transmitted and reflected acoustic modes, and surface modes strongly linked to the solid waves in the boundary, although no longitudinal or transverse waves within the boundary are excited. Examples are provided that demonstrate total transmission, total reflection, and a combination of the two. This thin-shell scattering problem is preferable to the mass-spring-damper scattering problem presented by Rienstra, since the thin-shell problem is fully determined and does not need to appeal to a Kutta-like condition or the inclusion of an instability in order to avoid a surface-streamline cusp at the boundary change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At high Reynolds numbers, wake flows become more globally unstable when they are confined within a duct or between two flat plates. At Reynolds numbers around 100, however, global analyses suggest that such flows become more stable when confined, while local analyses suggest that they become more unstable. The aim of this paper is to resolve this apparent contradiction by examining a set of obstacle-free wakes. In this theoretical and numerical study, we combine global and local stability analyses of planar wake flows at $\mathit{Re}= 100$ to determine the effect of confinement. We find that confinement acts in three ways: it modifies the length of the recirculation zone if one exists, it brings the boundary layers closer to the shear layers, and it can make the flow more locally absolutely unstable. Depending on the flow parameters, these effects work with or against each other to destabilize or stabilize the flow. In wake flows at $\mathit{Re}= 100$ with free-slip boundaries, flows are most globally unstable when the outer flows are 50 % wider than the half-width of the inner flow because the first and third effects work together. In wake flows at $\mathit{Re}= 100$ with no-slip boundaries, confinement has little overall effect when the flows are weakly confined because the first two effects work against the third. Confinement has a strong stabilizing effect, however, when the flows are strongly confined because all three effects work together. By combining local and global analyses, we have been able to isolate these three effects and resolve the apparent contradictions in previous work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An immersed finite element method is presented to compute flows with complex moving boundaries on a fixed Cartesian grid. The viscous, incompressible fluid flow equations are discretized with b-spline basis functions. The two-scale relation for b-splines is used to implement an elegant and efficient technique to satisfy the LBB condition. On non-grid-aligned fluid domains and at moving boundaries, the boundary conditions are enforced with a consistent penalty method as originally proposed by Nitsche. In addition, a special extrapolation technique is employed to prevent the loss of numerical stability in presence of arbitrarily small cut-cells. The versatility and accuracy of the proposed approach is demonstrated by means of convergence studies and comparisons with previous experimental and computational investigations.