3 resultados para Spleen.
em Cambridge University Engineering Department Publications Database
Resumo:
During systemic disease in mice, Salmonella enterica grows intracellularly within discrete foci of infection in the spleen and liver. In concomitant infections, foci containing different S. enterica strains are spatially separated. We have investigated whether functional interactions between bacterial populations within the same host can occur despite the known spatial separation of the foci and independence of growth of salmonellae residing in different foci. In this study we have demonstrated that bacterial numbers of virulent S. enterica serovar Typhimurium C5 strain in mouse tissues can be increased by the presence of the attenuated aroA S. Typhimurium SL3261 vaccine strain in the same tissue. Disease exacerbation does not require simultaneous coinjection of the attenuated bacteria. SL3261 can be administered up to 48 hr after or 24 hr before the administration of C5 and still determine higher tissue numbers of the virulent bacteria. This indicates that intravenous administration of a S. enterica vaccine strain could potentially exacerbate an established infection with wild-type bacteria. These data also suggest that the severity of an infection with a virulent S. enterica strain can be increased by the prior administration of a live attenuated vaccine strain if infection occurs within 48 hr of vaccination. Exacerbation of the growth of C5 requires Toll-like receptor 4-dependent interleukin-10 production with the involvement of both Toll/interleukin-1 receptor-domain-containing adaptor inducing interferon-beta and myeloid differentiation factor 88.
Resumo:
Salmonella enterica serovar Typhi, the agent of typhoid fever in humans, expresses the surface Vi polysaccharide antigen that contributes to virulence. However, Vi expression can also be detrimental to some key steps of S. Typhi infectivity, for example, invasion, and Vi is the target of protective immune responses. We used a strain of S. Typhimurium carrying the whole Salmonella pathogenicity island 7 (SPI-7) to monitor in vivo Vi expression within phagocytic cells of mice at different times after systemic infection. We also tested whether it is possible to modulate Vi expression via the use of in vivo-inducible promoters and whether this would trigger anti-Vi antibodies through the use of Vi-expressing live bacteria. Our results show that Vi expression in the liver and spleen is downregulated with the progression of infection and that the Vi-negative population of bacteria becomes prevalent by day 4 postinfection. Furthermore, we showed that replacing the natural tviA promoter with the promoter of the SPI-2 gene ssaG resulted in sustained Vi expression in the tissues. Intravenous or oral infection of mice with a strain of S. Typhimurium expressing Vi under the control of the ssaG promoter triggered detectable levels of all IgG subclasses specific for Vi. Our work highlights that Vi is downregulated in vivo and provides proof of principle that it is possible to generate a live attenuated vaccine that induces Vi-specific antibodies after single oral administration.
Resumo:
In vivo, antibiotics are often much less efficient than ex vivo and relapses can occur. The reasons for poor in vivo activity are still not completely understood. We have studied the fluoroquinolone antibiotic ciprofloxacin in an animal model for complicated Salmonellosis. High-dose ciprofloxacin treatment efficiently reduced pathogen loads in feces and most organs. However, the cecum draining lymph node (cLN), the gut tissue, and the spleen retained surviving bacteria. In cLN, approximately 10%-20% of the bacteria remained viable. These phenotypically tolerant bacteria lodged mostly within CD103⁺CX₃CR1⁻CD11c⁺ dendritic cells, remained genetically susceptible to ciprofloxacin, were sufficient to reinitiate infection after the end of the therapy, and displayed an extremely slow growth rate, as shown by mathematical analysis of infections with mixed inocula and segregative plasmid experiments. The slow growth was sufficient to explain recalcitrance to antibiotics treatment. Therefore, slow-growing antibiotic-tolerant bacteria lodged within dendritic cells can explain poor in vivo antibiotic activity and relapse. Administration of LPS or CpG, known elicitors of innate immune defense, reduced the loads of tolerant bacteria. Thus, manipulating innate immunity may augment the in vivo activity of antibiotics.