139 resultados para Spectral Sensitivity
em Cambridge University Engineering Department Publications Database
Resumo:
The use of changes in vibration properties for global damage detection and monitoring of existing concrete structures has received great research attention in the last three decades. To track changes in vibration properties experimentally, structures have been artificially damaged by a variety of scenarios. However, this procedure does not represent realistically the whole design-life degradation of concrete structures. This paper presents experimental work on a set of damaged reinforced concrete beams due to different loading regimes to assess the sensitivity of vibration characteristics. Of the total set, three beams were subject to incremental static loading up to failure to simulate overloading, and two beams subject to 15 million loading cycles with varying amplitudes to produce an accelerated whole-life degradation scenario. To assess the vibration behaviour in both cases, swept sine and harmonic excitations were conducted at every damage level. The results show that resonant frequencies are not sensitive enough to damage due to cyclic loading, whereas cosh spectral and root mean square distances are more sensitive, yet more scattered. In addition, changes in non-linearity follow a softening trend for beams under incremental static loading, whilst they are significantly inconsistent for beams under cyclic loading. Amongst all examined characteristics, changes in modal stiffness are found to be most sensitive to damage and least scattered, but modal stiffness is tedious to compute due mainly to the difficulty of constructing restoring force surfaces from field measurements. © (2013) Trans Tech Publications.
Resumo:
In this paper, micro gas sensor was fabricated using indium oxide nanowire for effective gas detection and monitoring system. Indium oxide nanowire was grown using thermal CVD, and their structural properties were examined by the SEM, XRD and TEM. The electric properties for microdropped indium oxide nanowire device were measured, and gas response characteristics were examined for CO gas. Sensors showed high sensitivity and stability for CO gas. And with below 20 mw power consumption, 5 ppm CO could be detected.
Resumo:
We develop methods for performing filtering and smoothing in non-linear non-Gaussian dynamical models. The methods rely on a particle cloud representation of the filtering distribution which evolves through time using importance sampling and resampling ideas. In particular, novel techniques are presented for generation of random realisations from the joint smoothing distribution and for MAP estimation of the state sequence. Realisations of the smoothing distribution are generated in a forward-backward procedure, while the MAP estimation procedure can be performed in a single forward pass of the Viterbi algorithm applied to a discretised version of the state space. An application to spectral estimation for time-varying autoregressions is described.
Resumo:
We present a statistical model-based approach to signal enhancement in the case of additive broadband noise. Because broadband noise is localised in neither time nor frequency, its removal is one of the most pervasive and difficult signal enhancement tasks. In order to improve perceived signal quality, we take advantage of human perception and define a best estimate of the original signal in terms of a cost function incorporating perceptual optimality criteria. We derive the resultant signal estimator and implement it in a short-time spectral attenuation framework. Audio examples, references, and further information may be found at http://www-sigproc.eng.cam.ac.uk/~pjw47.
Resumo:
We compare and contrast the effects of two distinctly different mechanisms of coupling (mechanical and electrical) on the parametric sensitivity of micromechanical sensors utilizing mode localization for sensor applications. For the first time, the strong correlation between mode localization and the phenomenon of 'eigenvalue loci-veering' is exploited for accurate quantification of the strength of internal coupling in mode localized sensors. The effects of capacitive coupling-spring tuning on the parametric sensitivity of electrically coupled resonators utilizing this sensing paradigm is also investigated and a mass sensor with sensitivity tunable by over 400% is realized. ©2009 IEEE.
Resumo:
We use vibration localization as a sensitive means of detecting small perturbations in stiffness in a pair of weakly coupled micromechanical resonators. For the first time, the variation in the eigenstates is studied by electrostatically coupling nearly identical resonators to allow for stronger localization of vibrational energy due to perturbations in stiffness. Eigenstate variations that are orders of magnitude greater than corresponding shifts in resonant frequency for an induced stiffness perturbation are experimentally demonstrated. Such high, voltagetunable parametric sensitivities together with the added advantage of intrinsic common mode rejection pave the way to a new paradigm of mechanical sensing. ©2009 IEEE.