6 resultados para Solution Space
em Cambridge University Engineering Department Publications Database
Resumo:
The aim of this research is to provide a unified modelling-based method to help with the evaluation of organization design and change decisions. Relevant literature regarding model-driven organization design and change is described. This helps identify the requirements for a new modelling methodology. Such a methodology is developed and described. The three phases of the developed method include the following. First, the use of CIMOSA-based multi-perspective enterprise modelling to understand and capture the most enduring characteristics of process-oriented organizations and externalize various types of requirement knowledge about any target organization. Second, the use of causal loop diagrams to identify dynamic causal impacts and effects related to the issues and constraints on the organization under study. Third, the use of simulation modelling to quantify the effects of each issue in terms of organizational performance. The design and case study application of a unified modelling method based on CIMOSA (computer integrated manufacturing open systems architecture) enterprise modelling, causal loop diagrams, and simulation modelling, is explored to illustrate its potential to support systematic organization design and change. Further application of the proposed methodology in various company and industry sectors, especially in manufacturing sectors, would be helpful to illustrate complementary uses and relative benefits and drawbacks of the methodology in different types of organization. The proposed unified modelling-based method provides a systematic way of enabling key aspects of organization design and change. The case company, its relevant data, and developed models help to explore and validate the proposed method. The application of CIMOSA-based unified modelling method and integrated application of these three modelling techniques within a single solution space constitutes an advance on previous best practice. Also, the purpose and application domain of the proposed method offers an addition to knowledge. © IMechE 2009.
Resumo:
Many problems in control and signal processing can be formulated as sequential decision problems for general state space models. However, except for some simple models one cannot obtain analytical solutions and has to resort to approximation. In this thesis, we have investigated problems where Sequential Monte Carlo (SMC) methods can be combined with a gradient based search to provide solutions to online optimisation problems. We summarise the main contributions of the thesis as follows. Chapter 4 focuses on solving the sensor scheduling problem when cast as a controlled Hidden Markov Model. We consider the case in which the state, observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. In sensor scheduling, our aim is to minimise the variance of the estimation error of the hidden state with respect to the action sequence. We present a novel SMC method that uses a stochastic gradient algorithm to find optimal actions. This is in contrast to existing works in the literature that only solve approximations to the original problem. In Chapter 5 we presented how an SMC can be used to solve a risk sensitive control problem. We adopt the use of the Feynman-Kac representation of a controlled Markov chain flow and exploit the properties of the logarithmic Lyapunov exponent, which lead to a policy gradient solution for the parameterised problem. The resulting SMC algorithm follows a similar structure with the Recursive Maximum Likelihood(RML) algorithm for online parameter estimation. In Chapters 6, 7 and 8, dynamic Graphical models were combined with with state space models for the purpose of online decentralised inference. We have concentrated more on the distributed parameter estimation problem using two Maximum Likelihood techniques, namely Recursive Maximum Likelihood (RML) and Expectation Maximization (EM). The resulting algorithms can be interpreted as an extension of the Belief Propagation (BP) algorithm to compute likelihood gradients. In order to design an SMC algorithm, in Chapter 8 uses a nonparametric approximations for Belief Propagation. The algorithms were successfully applied to solve the sensor localisation problem for sensor networks of small and medium size.
Resumo:
Accurate and efficient computation of the nearest wall distance d (or level set) is important for many areas of computational science/engineering. Differential equation-based distance/ level set algorithms, such as the hyperbolic-natured Eikonal equation, have demonstrated valuable computational efficiency. Here, in the context, as an 'auxiliary' equation to the main flow equations, the Eikonal equation is solved efficiently with two different finite volume approaches (the cell vertex and cell-centered). Application of the distance solution is studied for various geometries. Moreover, a procedure using the differential field to obtain the medial axis transform (MAT) for different geometries is presented. The latter provides a skeleton representation of geometric models that has many useful analysis properties. As an alternative approach to the pure geometric methods (e.g. the Voronoi approach), the current d-MAT procedure bypasses many difficulties that are usually encountered by pure geometric methods, especially in three dimensional space. It is also shown that the d-MAT approach provides the potential to sculpt/control the MAT form for specialized solution purposes. Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc.