4 resultados para Solar system

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basic types of hybrid PV/thermal solar system and their performance were analyzed comparatively. The research method and recent developments of PV/T system were described. This paper gave some examples of PV/T products and demonstration project. Finally, some main problems, which should be solved in R&D of PV/T system, were presented and the outlook of PV/T technology was briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have prepared single crystalline SnO2 and ZnO nanowires and polycrystalline TiO2 nanotubes (1D networks) as well as nanoparticle-based films (3D networks) from the same materials to be used as photoanodes for solid-state dye-sensitized solar cells. In general, superior photovoltaic performance can be achieved from devices based on 3-dimensional networks, mostly due to their higher short circuit currents. To further characterize the fabricated devices, the electronic properties of the different networks were measured via the transient photocurrent and photovoltage decay techniques. Nanowire-based devices exhibit extremely high, light independent electron transport rates while recombination dynamics remain unchanged. This indicates, contrary to expectations, a decoupling of transport and recombination dynamics. For typical nanoparticle-based photoanodes, the devices are usually considered electron-limited due to the poor electron transport through nanocrystalline titania networks. In the case of the nanowire-based devices, the system becomes limited by the organic hole transporter used. In the case of polycrystalline TiO2 nanotube-based devices, we observe lower transport rates and higher recombination dynamics than their nanoparticle-based counterparts, suggesting that in order to improve the electron transport properties of solid-state dye-sensitized solar cells, single crystalline structures should be used. These findings should aid future design of photoanodes based on nanowires or porous semiconductors with extended crystallinity to be used in dye-sensitized solar cells. © 2013 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work we compare the performance of organic solar cells, based on the bulk heterojunction system of P3HT:PCBM when adequate silver nanoparticles (NPs) are incorporated in two distinct places among the device structure. Introduction of NPs on top of the transparent anode revealed better overall performance with an increased efficiency of 17%. Alternatively, placing the NPs on top of the active photovoltaic layer resulted to 25% higher photo-current generation albeit with inferior electrical characteristics (i.e series and shunt resistance). Our findings suggest that enhanced scattering to non-specular directions from NPs site is maximized when penetrating light meets the particles after the polymer blend, but even this mechanism is not sufficient enough to explain the enhanced short circuit current observed. A second mechanism should be feasible; that is plasmon enhancement which is more efficient in the case where NPs are in direct contact with the polymer blend. J-V characteristics measured in the dark showed that NPs placed on top of the ITO film act as enhanced hole conducting sites, as evident by the lower series resistance values in these cells, suggesting this mechanism as more significant in this case. © 2012 Elsevier B.V. All rights reserved.