98 resultados para Soil types

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research has begun on Microbial Carbonate Precipitation (MCP), which shows promise as a soil improvement method because of its low carbon dioxide emission compared to cement stabilized agents. MCP produces calcium carbonate from carbonates and calcium in soil voids through ureolysis by "Bacillus Pasteurii". This study focuses on how the amount of calcium carbonate precipitation is affected by the injection conditions of the microorganism and nutrient salt, such as the number of injections and the soil type. Experiments were conducted to simulate soil improvement by bio-grouting soil in a syringe. The results indicate that the amount of precipitation is affected by injection conditions and soil type, suggesting that, in order for soil improvement by MCP to be effective, it is necessary to set injection conditions that are in accordance with the soil conditions. © 2011 ASCE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study was aimed at evaluating the mechanical and pH-dependent leaching performance of a mixed contaminated soil treated with a mixture of Portland cement (CEMI) and pulverised fuel ash (PFA). It also sought to develop operating envelopes, which define the range(s) of operating variables that result in acceptable performance. A real site soil with low contaminant concentrations, spiked with 3000mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000mg/kg of diesel, was treated with one part CEMI and four parts PFA (CEMI:PFA=1:4) using different binder and water contents. The performance was assessed over time using unconfined compressive strength (UCS), hydraulic conductivity, acid neutralisation capacity (ANC) and pH-dependent leachability of contaminants. With binder dosages ranging from 5% to 20% and water contents ranging from 14% to 21% dry weight, the 28-day UCS was up to 500kPa and hydraulic conductivity was around 10-8m/s. With leachant pH extremes of 7.2 and 0.85, leachability of the contaminants was in the range: 0.02-3500mg/kg for Cd, 0.35-1550mg/kg for Cu, 0.03-92mg/kg for Pb, 0.01-3300mg/kg for Ni, 0.02-4010mg/kg for Zn, and 7-4884mg/kg for total petroleum hydrocarbons (TPHs), over time. Design charts were produced from the results of the study, which show the water and/or binder proportions that could be used to achieve relevant performance criteria. The charts would be useful for the scale-up and design of stabilisation/solidification (S/S) treatment of similar soil types impacted with the same types of contaminants. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground vibration due to underground railways is a significant source of disturbance for people living or working near the subways. The numerical models used to predict vibration levels have inherent uncertainty which must be understood to give confidence in the predictions. A semi-analytical approach is developed herein to investigate the effect of soil layering on the surface vibration of a halfspace where both soil properties and layer inclination angles are varied. The study suggests that both material properties and inclination angle of the layers have significant effect ( ± 10dB) on the surface vibration response. © 2009 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable estimates for the maximum available uplift resistance from the backfill soil are essential to prevent upheaval buckling of buried pipelines. The current design code DNV RP F110 does not offer guidance on how to predict the uplift resistance when the cover:pipe diameter (H/D) ratio is less than 2. Hence the current industry practice is to discount the shear contribution from uplift resitance for design scenarios with H/D ratios less than 1. The necessity of this extra conservatism is assessed through a series of full-scale and centrifuge tests, 21 in total, at the Schofield Centre, University of Cambridge. Backfill types include saturated loose sand, saturated dense sand and dry gravel. Data revealed that the Vertical Slip Surface Model remains applicable for design scenarios in loose sand, dense sand and gravel with H/D ratios less than 1, and that there is no evidence that the contribution from shear should be ignored at these low H/D ratios. For uplift events in gravel, the shear component seems reliable if the cover is more than 1-2 times the average particle size (D50), and more research effort is currenty being carried out to verify this conclusion. Strain analysis from the Particle Image Velocimetry (PIV) technique proves that the Vertical Slip Surface Model is a good representation of the true uplift deformation mechanism in loose sand at H/D ratios between 0.5 and 3.5. At very low H/D ratios (H/D < 0.5), the deformation mechanism is more wedge-like, but the increased contribution from soil weight is likely to be compensated by the reduced shear contributions. Hence the design equation based on the Vertical Slip Surface Model still produces good estimates for the maximum available uplift resistance. The evolution of shear strain field from PIV analysis provides useful insight into how uplift resistance is mobilized as the uplift event progresses. Copyright 2010, Offshore Technology Conference.