5 resultados para Soil samples
em Cambridge University Engineering Department Publications Database
Resumo:
This article presents a laboratory study on the consequences of the application of combined soil stabilization and bioaugmentation in the remediation of a model contaminated soil. Stabilization and bioaugmentation are two techniques commonly applied independently for the remediation of heavy metal and organic contamination respectively. However, for a cocktail of contaminants combined treatments are currently being considered. The model soil was contaminated with a cocktail of organics and heavy metals based on the soil and contaminant conditions in a real contaminated site. The soil stabilization treatment was applied using either zeolite or green waste compost as additives and a commercially available hydrocarbon degrading microbial consortium was used for the bioaugmentation treatment. The effects of stabilization with or without bioaugmentation on the leachability of cadmium and copper was observed using an EU batch leaching test procedure and a flow-through column leaching test, both using deionized water at a pH of 5.6. In addition, the population of hydrocarbon degrading microorganisms was monitored using a modified plate count procedure in cases where bioaugmentation was applied. It was found that while the stabilization treatment reduced the metal leachability by up to 60%, the bioaugmentation treatment increased it by up to 100% Microbial survival was also higher in the stabilized soil samples.
Resumo:
This paper investigates the potential for carbonating reactive magnesia (MgO) to serve as a more sustainable soil stabilization method by providing rapid and significant strength development of the stabilized soil through absorbing substantial quantities of CO2. Gaseous CO2 was forced through laboratory-prepared reactive MgO-treated soil samples in a triaxial cell set-up, and their resulting mechanical and microstructural properties were investigated using unconfined compressive strength, X-ray diffraction, and scanning electron microscopy. The results showed that adequately carbonated MgO-treated soils could, in a few hours, reach a similar strength range to corresponding 28 day Portland cement (PC)-stabilized soils. Hydrated magnesium carbonates, namely nesquehonite and hydromagnesite-dypingite, were the main products of the carbonated MgO in the soil, and were responsible for the significant strength development.
Resumo:
Development of comparisons and correlations between the unconfined compressive strength (UCS) and the undrained triaxial compressive strength, qu, is essential for generalising performance and optimising the design of cement-stabilised soils. This paper introduces current work in collecting and collating data from a number of research projects involving both laboratory strength tests performed on identical cement-stabilised soil samples. The research project on cement-stabilised Singapore marine clays at the National University of Singapore has been used as an example to explain the work on comparing and correlating results from both tests by normalising data and constructing contour plots. The effect of variables on strength comparison and correlations was evaluated. The variation in strength correlations was found to be dependent on a number of factors including: soil properties, cement content, curing time and stress, total water/cement ratio, confining stress and strain rate. The results showed that at ~ 100 kPa confining stress, UCS and qu, had similar magnitudes. Correlations between strengths and other design variables are discussed and presented.
Resumo:
Stabilisation/solidification (S/S) is an effective technique for reducing the leachability of contaminants in soils. Very few studies have investigated the use of ground granulated blast furnace slag (GGBS) for S/S treatment of contaminated soils, although it has been shown to be effective in ground improvement. This study sought to investigate the potential of GGBS activated by cement and lime for S/S treatment of a mixed contaminated soil. A sandy soil spiked with 3000mg/kg each of a cocktail of heavy metals (Cd, Ni, Zn, Cu and Pb) and 10,000mg/kg of diesel was treated with binder blends of one part hydrated lime to four parts GGBS (lime-slag), and one part cement to nine parts GGBS (slag-cement). Three binder dosages, 5, 10 and 20% (m/m) were used and contaminated soil-cement samples were compacted to their optimum water contents. The effectiveness of the treatment was assessed using unconfined compressive strength (UCS), permeability and acid neutralisation capacity (ANC) tests with determination of contaminant leachability at the different acid additions. UCS values of up to 800kPa were recorded at 28days. The lowest coefficient of permeability recorded was 5×10(-9)m/s. With up to 20% binder dosage, the leachability of the contaminants was reduced to meet relevant environmental quality standards and landfill waste acceptance criteria. The pH-dependent leachability of the metals decreased over time. The results show that GGBS activated by cement and lime would be effective in reducing the leachability of contaminants in contaminated soils.
Resumo:
This work employed a clayey, silty, sandy gravel contaminated with a mixture of metals (Cd, Cu, Pb, Ni and Zn) and diesel. The contaminated soil was treated with 5 and 10% dosages of different cementitious binders. The binders include Portland cement, cement-fly ash, cement-slag and lime-slag mixtures. Monolithic leaching from the treated soils was evaluated over a 64-day period alongside granular leachability of 49- and 84-day old samples. Surface wash-off was the predominant leaching mechanism for monolithic samples. In this condition, with data from different binders and curing ages combined, granular leachability as a function of monolithic leaching generally followed degrees 4 and 6 polynomial functions. The only exception was for Cu, which followed the multistage dose-response model. The relationship between both leaching tests varied with the type of metal, curing age/residence time of monolithic samples in the leachant, and binder formulation. The results provide useful design information on the relationship between leachability of metals from monolithic forms of S/S treated soils and the ultimate leachability in the eventual breakdown of the stabilized/solidified soil.