6 resultados para Soil conservation projects
em Cambridge University Engineering Department Publications Database
Resumo:
This paper introduces current work in collating data from different projects using soil mix technology and establishing trends using artificial neural networks (ANNs). Variation in unconfined compressive strength as a function of selected soil mix variables (e.g., initial soil water content and binder dosage) is observed through the data compiled from completed and on-going soil mixing projects around the world. The potential and feasibility of ANNs in developing predictive models, which take into account a large number of variables, is discussed. The main objective of the work is the management and effective utilization of salient variables and the development of predictive models useful for soil mix technology design. Based on the observed success in the predictions made, this paper suggests that neural network analysis for the prediction of properties of soil mix systems is feasible. © ASCE 2011.
Resumo:
Portland cement is the most commonly and widely used binder in ground improvement soil stabilisation applications. However, many changes are now affecting the selection and application of stabilisation additives. These include the significant environmental impacts of Portland cement, increased use of industrial by-products and their variability, increased range of application of binders and the development of alternative cements and novel additives with enhanced environmental and technical performance. This paper presents results from a number of research projects on the application of a number of Portland cement-blended binders, which offer sustainability advantages over Portland cement alone, in soil stabilisation. The blend materials included ground granulated blastfurnace slag, pulverised fuel ash, cement kiln dust, zeolite and reactive magnesia and stabilised soils, ranging from sand and gravel to clay, and were assessed based on their mechanical performance and durability. The results are presented in terms of strength and durability enhancements offered by those blended binders.
Resumo:
The past 15 years have seen increasing applications of soil mix technology in land remediation, mainly in stabilisation/solidification treatments and the construction of low-permeability cut-off walls and permeable reactive barriers; clear evidence of the versatility of the technology and its wide-ranging applications. This paper provides an overview of some of the recent innovations of soil mix technology in land remediation covering equipment developments and applications, including systems for rectangular panels and trenching systems, treatments, such as chemical oxidation, and additives, such as modified clays, zeolites and reactive magnesia. The paper also provides case studies for such innovations. The paper concludes with an overview of an on-going research and development project SMiRT (Soil Mix Remediation Technology) which will involve field trials on a contaminated site and will employ some of the innovations discussed in the paper. The range of significant advantages that soil mix technology now offers compared to other remediation techniques is likely to place this remediation method at the forefront of remedial options for future brownfield projects.