5 resultados para Small agrarian production

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small RNAs have several important biological functions. MicroRNAs (miRNAs) and trans-acting small interfering RNAs (tasiRNAs) regulate mRNA stability and translation, and siRNAs cause post-transcriptional gene silencing of transposons, viruses and transgenes and are important in both the establishment and maintenance of cytosine DNA methylation. Here, we study the role of the four Arabidopsis thaliana DICER-LIKE genes (DCL1-DCL4) in these processes. Sequencing of small RNAs from a dcl2 dcl3 dcl4 triple mutant showed markedly reduced tasiRNA and siRNA production and indicated that DCL1, in addition to its role as the major enzyme for processing miRNAs, has a previously unknown role in the production of small RNAs from endogenous inverted repeats. DCL2, DCL3 and DCL4 showed functional redundancy in siRNA and tasiRNA production and in the establishment and maintenance of DNA methylation. Our studies also suggest that asymmetric DNA methylation can be maintained by pathways that do not require siRNAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to the three RNA polymerases (RNAP I-III) shared by all eukaryotic organisms, plant genomes encode a fourth RNAP (RNAP IV) that appears to be specialized in the production of siRNAs. Available data support a model in which dsRNAs are generated by RNAP IV and RNA-dependent RNAP 2 (RDR2) and processed by DICER (DCL) enzymes into 21- to 24-nt siRNAs, which are associated with different ARGONAUTE (AGO) proteins for transcriptional or posttranscriptional gene silencing. However, it is not yet clear what fraction of genomic siRNA production is RNAP IV-dependent, and to what extent these siRNAs are preferentially processed by certain DCL(s) or associated with specific AGOs for distinct downstream functions. To address these questions on a genome-wide scale, we sequenced approximately 335,000 siRNAs from wild-type and RNAP IV mutant Arabidopsis plants by using 454 technology. The results show that RNAP IV is required for the production of >90% of all siRNAs, which are faithfully produced from a discrete set of genomic loci. Comparisons of these siRNAs with those accumulated in rdr2 and dcl2 dcl3 dcl4 and those associated with AGO1 and AGO4 provide important information regarding the processing, channeling, and functions of plant siRNAs. We also describe a class of RNAP IV-independent siRNAs produced from endogenous single-stranded hairpin RNA precursors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An infiltration and growth process is here used as an alternative to the classical top-seeded melt-textured growth process for the production of Dy-123 single-domains with finely dispersed small size Dy-211 particles. The starting materials are the 211-particles and a barium and copper rich liquid phase precursor. The infiltration and growth process allows for controlling both the spatial and size distribution of the 211-particles in the final superconducting 123-single-domain. The main parameters (set-ups, maximum processing temperature with respect to the peritectic temperature, nature of reactant, porosity of the 211-preform) of the infiltration and growth process are discussed. Moreover, different processes of chimie douce are shown in order to produce Dy-211 particles with controlled shape and size, particles that can be used as precursors for the infiltration and growth process. © 2005 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to improve the power density of microactuators, recent research focuses on the applicability of fluidic actuation at the microscale. The main encountered difficulties in the development of small fluidic actuators are related to production tolerances and assembly requirements. In addition, these actuators tend to comprise highly three-dimensional parts, which are incompatible with traditional microproduction technologies. This paper presents accurate production and novel assembly techniques for the development of a hydraulic microactuator. Some of the presented techniques are widespread in precision mechanics, but have not yet been introduced in micromechanics. A prototype hydraulic microactuator with a bore of 1 mm and a length of 13 mm has been fabricated and tested. Measurements showed that this actuator is able to generate a force density of more than 0.23 N mm-2 and a work density of 0.18 mJ mm-3 at a driving pressure of 550 kPa, which is remarkable considering the small dimensions of the actuator. © 2005 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fully coupled methane hydrate model developed in Cambridge was adopted in this numerical study on gas production trial at the Eastern Nankai Trough, Japan 2013. Based on the latest experimental data of hydrate soil core samples, the clay parameters at Eastern Nankai site were successfully calibrated. With updated clay parameters and site geometry, a 50 days gas production trail was numerically simulated in FLAC2D. The geomechanical behaviour of hydrate bearing sediments under 3 different depressurization strategies were explored and discussed. The results from both axisymmetrical and plane-strain models suggest, the slope of the seabed only affects mechanical properties while no significant impact on the dissociation, temperature and pore pressure. For mechanical deformation after PT recovery, there are large settlements above the perforation zone and small uplift underneath the production zone. To validate the fully coupled model, numerical simulation with finer mesh in the hydrate production zone was carried out. The simulation results suggest good agreement between our model and JOE's results on history matching of gas and water production during trial. Parameter sensitivity of gas production is also investigated and concluded the sea water salinity is a dominant factor for gas production.