13 resultados para Skill
em Cambridge University Engineering Department Publications Database
Resumo:
Current models of motor learning posit that skill acquisition involves both the formation and decay of multiple motor memories that can be engaged in different contexts. Memory formation is assumed to be context dependent, so that errors most strongly update motor memories associated with the current context. In contrast, memory decay is assumed to be context independent, so that movement in any context leads to uniform decay across all contexts. We demonstrate that for both object manipulation and force-field adaptation, contrary to previous models, memory decay is highly context dependent. We show that the decay of memory associated with a given context is greatest for movements made in that context, with more distant contexts showing markedly reduced decay. Thus, both memory formation and decay are strongest for the current context. We propose that this apparently paradoxical organization provides a mechanism for optimizing performance. While memory decay tends to reduce force output, memory formation can correct for any errors that arise, allowing the motor system to regulate force output so as to both minimize errors and avoid unnecessary energy expenditure. The motor commands for any given context thus result from a balance between memory formation and decay, while memories for other contexts are preserved.
Resumo:
An MPhil programme, delivered by the Engineering Department at the University of Cambridge, claims to be excellent at preparing graduates for manufacturing industry careers. The course uses a combination of different educational experiences, including industry-based assignments, industrial visits and practical exercises. This research explores how problem solving skills are developed during the first module, Induction, which is designed to enable students to undertake their first industrial assignment. From the literature, four conditions necessary for skill development were identified: Provision of a skill description, making explicit key components A number of different experiences with a range of contextual variables A teaching process which includes regular feedback and student reflection Students motivated to learn. These were used to construct a skill development framework (SDF). Using a case study research design, multiple types of evidence were collected to test for the above conditions using both classroom observation and questionnaire methods. The results confirmed the presence of the SDF conditions at different levels, with reflection aspects considered the weakest. Conflicting results were obtained regarding the students' self-awareness of skill levels. A plausible explanation is a change in the students' frame of reference. This initial study set out to develop a better understanding of the process of skill development. Whilst the SDF appears reasonable, there is a need for further work in three broad areas of defining skills, assessing skills and developing reflection skills.
Resumo:
When we have learned a motor skill, such as cycling or ice-skating, we can rapidly generalize to novel tasks, such as motorcycling or rollerblading [1-8]. Such facilitation of learning could arise through two distinct mechanisms by which the motor system might adjust its control parameters. First, fast learning could simply be a consequence of the proximity of the original and final settings of the control parameters. Second, by structural learning [9-14], the motor system could constrain the parameter adjustments to conform to the control parameters' covariance structure. Thus, facilitation of learning would rely on the novel task parameters' lying on the structure of a lower-dimensional subspace that can be explored more efficiently. To test between these two hypotheses, we exposed subjects to randomly varying visuomotor tasks of fixed structure. Although such randomly varying tasks are thought to prevent learning, we show that when subsequently presented with novel tasks, subjects exhibit three key features of structural learning: facilitated learning of tasks with the same structure, strong reduction in interference normally observed when switching between tasks that require opposite control strategies, and preferential exploration along the learned structure. These results suggest that skill generalization relies on task variation and structural learning.
Resumo:
Although learning a motor skill, such as a tennis stroke, feels like a unitary experience, researchers who study motor control and learning break the processes involved into a number of interacting components. These components can be organized into four main groups. First, skilled performance requires the effective and efficient gathering of sensory information, such as deciding where and when to direct one's gaze around the court, and thus an important component of skill acquisition involves learning how best to extract task-relevant information. Second, the performer must learn key features of the task such as the geometry and mechanics of the tennis racket and ball, the properties of the court surface, and how the wind affects the ball's flight. Third, the player needs to set up different classes of control that include predictive and reactive control mechanisms that generate appropriate motor commands to achieve the task goals, as well as compliance control that specifies, for example, the stiffness with which the arm holds the racket. Finally, the successful performer can learn higher-level skills such as anticipating and countering the opponent's strategy and making effective decisions about shot selection. In this Primer we shall consider these components of motor learning using as an example how we learn to play tennis.
Resumo:
'Learning to learn' phenomena have been widely investigated in cognition, perception and more recently also in action. During concept learning tasks, for example, it has been suggested that characteristic features are abstracted from a set of examples with the consequence that learning of similar tasks is facilitated-a process termed 'learning to learn'. From a computational point of view such an extraction of invariants can be regarded as learning of an underlying structure. Here we review the evidence for structure learning as a 'learning to learn' mechanism, especially in sensorimotor control where the motor system has to adapt to variable environments. We review studies demonstrating that common features of variable environments are extracted during sensorimotor learning and exploited for efficient adaptation in novel tasks. We conclude that structure learning plays a fundamental role in skill learning and may underlie the unsurpassed flexibility and adaptability of the motor system.
Resumo:
Motor task variation has been shown to be a key ingredient in skill transfer, retention, and structural learning. However, many studies only compare training of randomly varying tasks to either blocked or null training, and it is not clear how experiencing different nonrandom temporal orderings of tasks might affect the learning process. Here we study learning in human subjects who experience the same set of visuomotor rotations, evenly spaced between -60° and +60°, either in a random order or in an order in which the rotation angle changed gradually. We compared subsequent learning of three test blocks of +30°→-30°→+30° rotations. The groups that underwent either random or gradual training showed significant (P < 0.01) facilitation of learning in the test blocks compared with a control group who had not experienced any visuomotor rotations before. We also found that movement initiation times in the random group during the test blocks were significantly (P < 0.05) lower than for the gradual or the control group. When we fit a state-space model with fast and slow learning processes to our data, we found that the differences in performance in the test block were consistent with the gradual or random task variation changing the learning and retention rates of only the fast learning process. Such adaptation of learning rates may be a key feature of ongoing meta-learning processes. Our results therefore suggest that both gradual and random task variation can induce meta-learning and that random learning has an advantage in terms of shorter initiation times, suggesting less reliance on cognitive processes.
Resumo:
Technological investment is a key driver of innovation and the evaluation of technology potential is becoming increasingly important in this context. There is a range of approaches and tools for developing an understanding of the value of technology. However the process of communicating this potential to possible customers is not well documented in terms of theory and practice and falls outside the skill set of many technologists. This paper seeks to integrate the concepts of marketing and consultative selling into making business cases for new technologies. It describes an exploratory study which results in an outline process activity model for technologists wishing to build an effective business case for securing investment internally or when selling a technology externally. Following a review of literature, we suggest that there is potential to learn from market research and consultative sales techniques, and propose a five step process. The work has been industrially validated and forms a novel foundation for further development. © 2012 Elsevier Inc.