15 resultados para Sites archéologiques -- Liban
em Cambridge University Engineering Department Publications Database
Resumo:
Recently, experimental evidence was presented which suggests that as the stoichiometric composition CuTe, NiTe, Tl//2Te and MnTe are approached from pure Te in the liquid state, substantial charge transfer takes place and Te exists in the form Te**y**31 ions with y close to 2. The system studied (Te-Tl) is one in which charge transfer localizes electrons on the tellurium and leads to semiconducting behavior at the stoichiometric composition Tl//2Te.
Resumo:
Construction industry is a sector that is renowned for the slow uptake of new technologies. This is usually due to the conservative nature of this sector that relies heavily on tried and tested and successful old business practices. However, there is an eagerness in this industry to adopt Building Information Modelling (BIM) technologies to capture and record accurate information about a building project. But vast amounts of information and knowledge about the construction process is typically hidden within informal social interactions that take place in the work environment. In this paper we present a vision where smartphones and tablet devices carried by construction workers are used to capture the interaction and communication between workers in the field. Informal chats about decisions taken in the field, impromptu formation of teams, identification of key persons for certain tasks, and tracking the flow of information across the project community, are some pieces of information that could be captured by employing social sensing in the field. This information can not only be used during the construction to improve the site processes but it can also be exploited by the end user during maintenance of the building. We highlight the challenges that need to be overcome for this mobile and social sensing system to become a reality. © 2012 ACM.
Resumo:
When tracking resources in large-scale, congested, outdoor construction sites, the cost and time for purchasing, installing and maintaining the position sensors needed to track thousands of materials, and hundreds of equipment and personnel can be significant. To alleviate this problem a novel vision based tracking method that allows each sensor (camera) to monitor the position of multiple entities simultaneously has been proposed. This paper presents the full-scale validation experiments for this method. The validation included testing the method under harsh conditions at a variety of mega-project construction sites. The procedure for collecting data from the sites, the testing procedure, metrics, and results are reported. Full-scale validation demonstrates that the novel vision tracking provides a good solution to track different entities on a large, congested construction site.
Resumo:
Tracking methods have the potential to retrieve the spatial location of project related entities such as personnel and equipment at construction sites, which can facilitate several construction management tasks. Existing tracking methods are mainly based on Radio Frequency (RF) technologies and thus require manual deployment of tags. On construction sites with numerous entities, tags installation, maintenance and decommissioning become an issue since it increases the cost and time needed to implement these tracking methods. To address these limitations, this paper proposes an alternate 3D tracking method based on vision. It operates by tracking the designated object in 2D video frames and correlating the tracking results from multiple pre-calibrated views using epipolar geometry. The methodology presented in this paper has been implemented and tested on videos taken in controlled experimental conditions. Results are compared with the actual 3D positions to validate its performance.
Resumo:
Cement-bentonite (CB) cutoff walls have long been used to control ground water flow and contaminant migration at polluted sites. Hydraulic conductivity and unconfined compressive strength are two short-term properties often used by industry and owners in CB specification and are important parameters discussed in this paper. For polluted sites, long-term compatibility is also an important issue. These properties are coupled to a number of external factors including the mix design, construction sequence, presence/absence of contaminants at the site. Additional short-term properties for engineering assessment include the stressstrain characteristics in both drained and undrained shear in both with and without confinement as well as one-dimensional consolidation properties. Long term CB properties are affected by aging, reaction chemistry, drying, in situ stress state, and interaction with the polluted environment. © 2013 Taylor & Francis Group.