117 resultados para Single Drop
em Cambridge University Engineering Department Publications Database
Resumo:
Jets from drop-on-demand inkjet print-heads consist of a main drop with a trailing filament, which either condenses into the main drop, or breaks up into satellite drops. Filament behaviour is quantitatively similar to that of larger, free symmetrical filamentscan be predicted from the aspect ratio and Ohnesorge number. Symmetrical filaments generated from inkjet print-heads show the same behaviour. A simple model, based on competition between the processes of axial shortening and radial necking, predicts the critical aspect ratio below which the jet condenses into a single drop. The success of this simple criterion supports the underlying physical model. © 2013 American Institute of Physics.
Resumo:
Time-resolved particle image velocimetry (PIV) has been performed inside the nozzle of a commercially available inkjet print-head to obtain the time-dependent velocity waveform. A printhead with a single transparent nozzle 80 μm in orifice diameter was used to eject single droplets at a speed of 5 m/s. An optical microscope was used with an ultra-high-speed camera to capture the motion of particles suspended in a transparent liquid at the center of the nozzle and above the fluid meniscus at a rate of half a million frames per second. Time-resolved velocity fields were obtained from a fluid layer approximately 200 μm thick within the nozzle for a complete jetting cycle. A Lagrangian finite-element numerical model with experimental measurements as inputs was used to predict the meniscus movement. The model predictions showed good agreement with the experimental results. This work provides the first experimental verification of physical models and numerical simulations of flows within a drop-on-demand nozzle. © 2012 Society for Imaging Science and Technology.