14 resultados para Simulated environment (Teaching method)

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent trend in spoken dialogue research is the use of reinforcement learning to train dialogue systems in a simulated environment. Past researchers have shown that the types of errors that are simulated can have a significant effect on simulated dialogue performance. Since modern systems typically receive an N-best list of possible user utterances, it is important to be able to simulate a full N-best list of hypotheses. This paper presents a new method for simulating such errors based on logistic regression, as well as a new method for simulating the structure of N-best lists of semantics and their probabilities, based on the Dirichlet distribution. Off-line evaluations show that the new Dirichlet model results in a much closer match to the receiver operating characteristics (ROC) of the live data. Experiments also show that the logistic model gives confusions that are closer to the type of confusions observed in live situations. The hope is that these new error models will be able to improve the resulting performance of trained dialogue systems. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulated annealing is a popular method for approaching the solution of a global optimization problem. Existing results on its performance apply to discrete combinatorial optimization where the optimization variables can assume only a finite set of possible values. We introduce a new general formulation of simulated annealing which allows one to guarantee finite-time performance in the optimization of functions of continuous variables. The results hold universally for any optimization problem on a bounded domain and establish a connection between simulated annealing and up-to-date theory of convergence of Markov chain Monte Carlo methods on continuous domains. This work is inspired by the concept of finite-time learning with known accuracy and confidence developed in statistical learning theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When designing vertical-axis wind turbines (VAWTs) for deployment in the urban environment, it is desirable to have a low-cost computational model that allows for modelling the coupled interaction of the turbine with the flowfleld. Such a method is presented in this paper, It combines a variation of the multiple streamtube model with a potential method to model flowfleld interactions. A method referred to as "streamtube surgery" is used to couple the influence of the flowfleld with the performance model of the VAWT. This tool is used to explore the instantaneous and cycle-averaged flowflelds of VAWTs. It can also be used to evaluate the influence on performance of multiple VAWTs in dense arrays or to quantify blockage effects of a VAWT in wind tunnel testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulated annealing is a popular method for approaching the solution of a global optimization problem. Existing results on its performance apply to discrete combinatorial optimization where the optimization variables can assume only a finite set of possible values. We introduce a new general formulation of simulated annealing which allows one to guarantee finite-time performance in the optimization of functions of continuous variables. The results hold universally for any optimization problem on a bounded domain and establish a connection between simulated annealing and up-to-date theory of convergence of Markov chain Monte Carlo methods on continuous domains. This work is inspired by the concept of finite-time learning with known accuracy and confidence developed in statistical learning theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A permanent-magnet motor has been designed for an innovative axial-flow ventricular assist device (VAD), to be placed in the descending aorta, intended to offload the left ventricle and augment renal perfusion in patients with congestive heart failure (CHF). For this application, an intra-aortic impeller with a built-in permanent magnet rotor is driven by an extraaortic stator working in synchronism with the natural heart. To meet this need, a two-dimensional analytical model has been developed in the MATLAB environment to estimate machine parameters; finite element analysis (FEA) has been used to refine the results. A prototype blood pump equipped with an innovative motor designed from the procedure above has been tested in a mock loop representing the human circulatory system. The performance of VAD incorporating the motor is presented. © 2009 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas hydrate is a crystalline solid found within marine and subpermafrost sediments. While the presence of hydrates can have a profound effect on sediment properties, the stress-strain behavior of hydrate-bearing sediments is poorly understood due to inherent limitations in laboratory testing. In this study, we use numerical simulations to improve our understanding of the mechanical behavior of hydrate-bearing sands. The hydrate mass is simulated as either small randomly distributed bonded grains or as "ripened hydrate" forming patchy saturation, whereby sediment clusters with 100% pore-filled hydrate saturation are distributed within a hydrate-free sediment. Simulation results reveal that reduced sand porosity and higher hydrate saturation cause an increase in stiffness, strength, and dilative tendency, and the critical state line shifts toward higher void ratio and higher shear strength. In particular, the critical state friction angle increases in sands with patchy saturation, while the apparent cohesion is affected the most when the hydrate mass is distributed in pores. Sediments with patchy hydrate distribution exhibit a slightly lower strength than sediments with randomly distributed hydrate. Finally, hydrate dissociation under drained conditions leads to volume contraction and/or stress relaxation, and pronounced shear strains can develop if the hydrate-bearing sand is subjected to deviatoric loading during dissociation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most quasi-static ultrasound elastography methods image only the axial strain, derived from displacements measured in the direction of ultrasound propagation. In other directions, the beam lacks high resolution phase information and displacement estimation is therefore less precise. However, these estimates can be improved by steering the ultrasound beam through multiple angles and combining displacements measured along the different beam directions. Previously, beamsteering has only considered the 2D case to improve the lateral displacement estimates. In this paper, we extend this to 3D using a simulated 2D array to steer both laterally and elevationally in order to estimate the full 3D displacement vector over a volume. The method is tested on simulated and phantom data using a simulated 6-10MHz array, and the precision of displacement estimation is measured with and without beamsteering. In simulations, we found a statistically significant improvement in the precision of lateral and elevational displacement estimates: lateral precision 35.69μm unsteered, 3.70μm steered; elevational precision 38.67μm unsteered, 3.64μm steered. Similar results were found in the phantom data: lateral precision 26.51μm unsteered, 5.78μm steered; elevational precision 28.92μm unsteered, 11.87μm steered. We conclude that volumetric 3D beamsteering improves the precision of lateral and elevational displacement estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most quasi-static ultrasound elastography methods image only the axial strain, derived from displacements measured in the direction of ultrasound propagation. In other directions, the beam lacks high resolution phase information and displacement estimation is therefore less precise. However, these estimates can be improved by steering the ultrasound beam through multiple angles and combining displacements measured along the different beam directions. Previously, beamsteering has only considered the 2D case to improve the lateral displacement estimates. In this paper, we extend this to 3D using a simulated 2D array to steer both laterally and elevationally in order to estimate the full 3D displacement vector over a volume. The method is tested on simulated and phantom data using a simulated 6-10 MHz array, and the precision of displacement estimation is measured with and without beamsteering. In simulations, we found a statistically significant improvement in the precision of lateral and elevational displacement estimates: lateral precision 35.69 μm unsteered, 3.70 μm steered; elevational precision 38.67 μm unsteered, 3.64 μm steered. Similar results were found in the phantom data: lateral precision 26.51 μm unsteered, 5.78 μm steered; elevational precision 28.92 μm unsteered, 11.87 μm steered. We conclude that volumetric 3D beamsteering improves the precision of lateral and elevational displacement estimates. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the design of an AC loss experiment using nitrogen boil-off method. This experiment is aimed at exploring the AC loss of HTS double race-track coils which will be installed on the rotor of a wind turbine generator. The operating environment is simulated by designing a cryostat with rotating magnetic field windings. Apart from the fact that the alternating magnetic field causes most of AC loss on the HTS coils, we also believe that the DC background field would be another important factor causing AC loss if the HTS coil is experiencing by both alternating magnetic field in the perpendicular direction and DC background field in the parallel direction. In order to perform the boil-off measurement, we present the method to estimate the heat leakage in the cryostat which might cause errors to the measurement. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on fuel design optimization of a PWR operating in a self sustainable Th-233U fuel cycle. Monte Carlo simulated annealing method was used in order to identify the fuel assembly configuration with the most attractive breeding performance. In previous studies, it was shown that breeding may be achieved by employing heterogeneous Seed-Blanket fuel geometry. The arrangement of seed and blanket pins within the assemblies may be determined by varying the designed parameters based on basic reactor physics phenomena which affect breeding. However, the amount of free parameters may still prove to be prohibitively large in order to systematically explore the design space for optimal solution. Therefore, the Monte Carlo annealing algorithm for neutronic optimization is applied in order to identify the most favorable design. The objective of simulated annealing optimization is to find a set of design parameters, which maximizes some given performance function (such as relative period of net breeding) under specified constraints (such as fuel cycle length). The first objective of the study was to demonstrate that the simulated annealing optimization algorithm will lead to the same fuel pins arrangement as was obtained in the previous studies which used only basic physics phenomena as guidance for optimization. In the second part of this work, the simulated annealing method was used to optimize fuel pins arrangement in much larger fuel assembly, where the basic physics intuition does not yield clearly optimal configuration. The simulated annealing method was found to be very efficient in selecting the optimal design in both cases. In the future, this method will be used for optimization of fuel assembly design with larger number of free parameters in order to determine the most favorable trade-off between the breeding performance and core average power density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a new formulation of the material point method (MPM) for solving coupled hydromechanical problems of fluid-saturated soil subjected to large deformation. A soil-pore fluid coupled MPM algorithm based on Biot's mixture theory is proposed for solving hydromechanical interaction problems that include changes in water table location with time. The accuracy of the proposed method is examined by comparing the results of the simulation of a one-dimensional consolidation test with the corresponding analytical solution. A sensitivity analysis of the MPM parameters used in the proposed method is carried out for examining the effect of the number of particles per mesh and mesh size on solution accuracy. For demonstrating the capability of the proposed method, a physical model experiment of a large-scale levee failure by seepage is simulated. The behavior of the levee model with time-dependent changes in water table matches well to the experimental observations. The mechanisms of seepage-induced failure are discussed by examining the pore-water pressures, as well as the effective stresses computed from the simulations © 2013 American Society of Civil Engineers.