287 resultados para Shear band

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interbedded layers of glacial deposits and marine or glacimarine clay layers are a common feature of offshore sediment. Typically, offshore marine clays are lightly overconsolidated sensitive clay. Some case histories on submarine landslides show that the slip surface passes through these marine clay layers. In this paper a model is proposed for post-peak strain softening behavior of marine sensitive clay. The slope failure mechanism is examined using the concept of shear band propagation. It is shown that shear band propagation and post-peak stress-strain behavior of clay layers are two major factors in submarine slope stability analysis. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Avalanches, debris flows, and landslides are geophysical hazards, which involve rapid mass movement of granular solids, water and air as a single-phase system. The dynamics of a granular flow involve at least three distinct scales: the micro-scale, meso-scale, and the macro-scale. This study aims to understand the ability of continuum models to capture the micro-mechanics of dry granular collapse. Material Point Method (MPM), a hybrid Lagrangian and Eulerian approach, with Mohr-Coulomb failure criterion is used to describe the continuum behaviour of granular column collapse, while the micromechanics is captured using Discrete Element Method (DEM) with tangential contact force model. The run-out profile predicted by the continuum simulations matches with DEM simulations for columns with small aspect ratios ('h/r' < 2), however MPM predicts larger run-out distances for columns with higher aspect ratios ('h/r' > 2). Energy evolution studies in DEM simulations reveal higher collisional dissipation in the initial free-fall regime for tall columns. The lack of a collisional energy dissipation mechanism in MPM simulations results in larger run-out distances. Micro-structural effects, such as shear band formations, were observed both in DEM and MPM simulations. A sliding flow regime is observed above the distinct passive zone at the core of the column. Velocity profiles obtained from both the scales are compared to understand the reason for a slow flow run-out mobilization in MPM simulations. © 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quest for materials capable of realizing the next generation of electronic and photonic devices continues to fuel research on the electronic, optical and vibrational properties of graphene. Few-layer graphene (FLG) flakes with less than ten layers each show a distinctive band structure. Thus, there is an increasing interest in the physics and applications of FLGs. Raman spectroscopy is one of the most useful and versatile tools to probe graphene samples. Here, we uncover the interlayer shear mode of FLGs, ranging from bilayer graphene (BLG) to bulk graphite, and suggest that the corresponding Raman peak measures the interlayer coupling. This peak scales from ∼43cm -1 in bulk graphite to ∼31cm -1 in BLG. Its low energy makes it sensitive to near-Dirac point quasiparticles. Similar shear modes are expected in all layered materials, providing a direct probe of interlayer interactions. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drosophila germ-band extension (GBE) is an example of the convergence and extension movements that elongate and narrow embryonic tissues. To understand the collective cell behaviours underlying tissue morphogenesis, we have continuously quantified cell intercalation and cell shape change during GBE. We show that the fast, early phase of GBE depends on cell shape change in addition to cell intercalation. In antero-posterior patterning mutants such as those for the gap gene Krüppel, defective polarized cell intercalation is compensated for by an increase in antero-posterior cell elongation, such that the initial rate of extension remains the same. Spatio-temporal patterns of cell behaviours indicate that an antero-posterior tensile force deforms the germ band, causing the cells to change shape passively. The rate of antero-posterior cell elongation is reduced in twist mutant embryos, which lack mesoderm. We propose that cell shape change contributing to germ-band extension is a passive response to mechanical forces caused by the invaginating mesoderm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new algorithm for waveletbased multidimensional image deconvolution which employs subband-dependent minimization and the dual-tree complex wavelet transform in an iterative Bayesian framework. In addition, this algorithm employs a new prior instead of the popular ℓ1 norm, and is thus able to embed a learning scheme during the iteration which helps it to achieve better deconvolution results and faster convergence. © 2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tunable DS-DBR laser is demonstrated for uncooled WDM C-band channel generation with tight spacing (SOGHz) and low thermal drift (±2.5GHz) up to 70°C. 2.5Gb/s direct modulation with transmission over a 75km link is achieved. © 2000 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the response statistics of a dynamic system that has random properties. The frequency-band-averaged energy of the system is considered, and a closed form expression is derived for the relative variance of this quantity. The expression depends upon three parameters: the modal overlap factor m, a bandwidth parameter B, and a parameter α that defines the nature of the loading (for example single point forcing or rain-on-the-roof loading). The result is applicable to any single structural component or acoustic volume, and a comparison is made here with simulation results for a mass loaded plate. Good agreement is found between the simulations and the theory. © 2003 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the design and electrical characterization of a single crystal silicon micromechanical square-plate resonator. The microresonator has been excited in the anti-symmetrical wine glass mode at a resonant frequency of 5.166 MHz and exhibits an impressive quality factor (Q) of 3.7 × 106 at a pressure of 33 mtorr. The device has been fabricated in a commercial foundry process. An associated motional resistance of approximately 50 kΩ using a dc bias voltage of 60 V is measured for a transduction gap of 2 νm due to the ultra-high Q of the resonator. This result corresponds to a frequency-Q product of 1.9 × 1013, the highest reported for a fundamental mode single-crystal silicon resonator and on par with some of the best quartz crystal resonators. The results are indicative of the superior performance of silicon as a mechanical material, and show that the wine glass resonant mode is beneficial for achieving high quality factors allowed by the material limit. © 2009 IOP Publishing Ltd.