5 resultados para Shared learning

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning is often understood as an organism's gradual acquisition of the association between a given sensory stimulus and the correct motor response. Mathematically, this corresponds to regressing a mapping between the set of observations and the set of actions. Recently, however, it has been shown both in cognitive and motor neuroscience that humans are not only able to learn particular stimulus-response mappings, but are also able to extract abstract structural invariants that facilitate generalization to novel tasks. Here we show how such structure learning can enhance facilitation in a sensorimotor association task performed by human subjects. Using regression and reinforcement learning models we show that the observed facilitation cannot be explained by these basic models of learning stimulus-response associations. We show, however, that the observed data can be explained by a hierarchical Bayesian model that performs structure learning. In line with previous results from cognitive tasks, this suggests that hierarchical Bayesian inference might provide a common framework to explain both the learning of specific stimulus-response associations and the learning of abstract structures that are shared by different task environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our ability to skillfully manipulate an object often involves the motor system learning to compensate for the dynamics of the object. When the two arms learn to manipulate a single object they can act cooperatively, whereas when they manipulate separate objects they control each object independently. We examined how learning transfers between these two bimanual contexts by applying force fields to the arms. In a coupled context, a single dynamic is shared between the arms, and in an uncoupled context separate dynamics are experienced independently by each arm. In a composition experiment, we found that when subjects had learned uncoupled force fields they were able to transfer to a coupled field that was the sum of the two fields. However, the contribution of each arm repartitioned over time so that, when they returned to the uncoupled fields, the error initially increased but rapidly reverted to the previous level. In a decomposition experiment, after subjects learned a coupled field, their error increased when exposed to uncoupled fields that were orthogonal components of the coupled field. However, when the coupled field was reintroduced, subjects rapidly readapted. These results suggest that the representations of dynamics for uncoupled and coupled contexts are partially independent. We found additional support for this hypothesis by showing significant learning of opposing curl fields when the context, coupled versus uncoupled, was alternated with the curl field direction. These results suggest that the motor system is able to use partially separate representations for dynamics of the two arms acting on a single object and two arms acting on separate objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The paper examines how a number of key themes are introduced in the Masters programme in Engineering for Sustainable Development at Cambridge University through student centred activities. These themes include dealing with complexity, uncertainty, change, other disciplines, people, environmental limits, whole life costs, and trade-offs. Design/methodology/approach: The range of exercises and assignments designed to encourage students to test their own assumptions and abilities to develop competencies in these areas are analysed by mapping the key themes onto the formal activities which all students undertake throughout the core MPhil programme. The paper reviews the range of these activities that are designed to help support the formal delivery of the taught programme. These include residential field courses, role plays, change challenges, games, systems thinking, multi criteria decision making, awareness of literature from other disciplines and consultancy projects. An axial coding approach to the analysis of routine feedback questionnaires drawn from recent years has been used to identify how student’s own awareness develops. Also results of two surveys are presented which tests the students’ perceptions about whether or not the course is providing learning environments to develop awareness and skills in these areas. Findings: Students generally perform well against these tasks with a significant feature being the mutual support they give to each other in their learning. The paper concludes that for students from an engineering background it is an holistic approach to delivering a new way of thinking through a combination of lectures, class activities, assignments, interactions between class members, and access to material elsewhere in the University that enables participants to develop their skills in each of the key themes. Originality /value: The paper provides a reflection on different pedagogical approaches to exploring key sustainable themes and reports students own perceptions of the value of these kinds of activities. Experiences are shared of running a range of diverse learning activities within a professional practice Masters programme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an algorithm to perform multitask learning where each task has potentially distinct label sets and label correspondences are not readily available. This is in contrast with existing methods which either assume that the label sets shared by different tasks are the same or that there exists a label mapping oracle. Our method directly maximizes the mutual information among the labels, and we show that the resulting objective function can be efficiently optimized using existing algorithms. Our proposed approach has a direct application for data integration with different label spaces, such as integrating Yahoo! and DMOZ web directories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many visual datasets are traditionally used to analyze the performance of different learning techniques. The evaluation is usually done within each dataset, therefore it is questionable if such results are a reliable indicator of true generalization ability. We propose here an algorithm to exploit the existing data resources when learning on a new multiclass problem. Our main idea is to identify an image representation that decomposes orthogonally into two subspaces: a part specific to each dataset, and a part generic to, and therefore shared between, all the considered source sets. This allows us to use the generic representation as un-biased reference knowledge for a novel classification task. By casting the method in the multi-view setting, we also make it possible to use different features for different databases. We call the algorithm MUST, Multitask Unaligned Shared knowledge Transfer. Through extensive experiments on five public datasets, we show that MUST consistently improves the cross-datasets generalization performance. © 2013 Springer-Verlag.