10 resultados para Series Summation Method

em Cambridge University Engineering Department Publications Database


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new thermal model based on Fourier series expansion method has been presented for dynamic thermal analysis on power devices. The thermal model based on the Fourier series method has been programmed in MATLAB SIMULINK and integrated with a physics-based electrical model previously reported. The model was verified for accuracy using a two-dimensional Fourier model and a two-dimensional finite difference model for comparison. To validate this thermal model, experiments using a 600V 50A IGBT module switching an inductive load, has been completed under high frequency operation. The result of the thermal measurement shows an excellent match with the simulated temperature variations and temperature time-response within the power module. ©2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a new method for acquiring three-dimensional (3-D) volumes of ultrasonic axial strain data. The method uses a mechanically-swept probe to sweep out a single volume while applying a continuously varying axial compression. Acquisition of a volume takes 15-20 s. A strain volume is then calculated by comparing frame pairs throughout the sequence. The method uses strain quality estimates to automatically pick out high quality frame pairs, and so does not require careful control of the axial compression. In a series of in vitro and in vivo experiments, we quantify the image quality of the new method and also assess its ease of use. Results are compared with those for the current best alternative, which calculates strain between two complete volumes. The volume pair approach can produce high quality data, but skillful scanning is required to acquire two volumes with appropriate relative strain. In the new method, the automatic quality-weighted selection of image pairs overcomes this difficulty and the method produces superior quality images with a relatively relaxed scanning technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use reversible jump Markov chain Monte Carlo (MCMC) methods to address the problem of model order uncertainty in autoregressive (AR) time series within a Bayesian framework. Efficient model jumping is achieved by proposing model space moves from the full conditional density for the AR parameters, which is obtained analytically. This is compared with an alternative method, for which the moves are cheaper to compute, in which proposals are made only for new parameters in each move. Results are presented for both synthetic and audio time series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a stochastic simulation technique for subset selection in time series models, based on the use of indicator variables with the Gibbs sampler within a hierarchical Bayesian framework. As an example, the method is applied to the selection of subset linear AR models, in which only significant lags are included. Joint sampling of the indicators and parameters is found to speed convergence. We discuss the possibility of model mixing where the model is not well determined by the data, and the extension of the approach to include non-linear model terms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a series of centrifuge tests carried out to investigate the performance of non-structural inclined micro-piles as a potential liquefaction remediation method for existing buildings. Both a single-degree-of-freedom frame structure and a two-storey, two-degree-of-freedom frame structure were used as model buildings in these tests. Centrifuge tests were carried out with and without micro-piles in the foundation soil for each structure. Results primarily from the tests with the SDOF structure are presented in this paper. It is found that the micro-piles have some beneficial effect by increasing shear strains in the soil in their vicinity and hence causing dilation in these zones. However, they also increase structural accelerations by transmitting accelerations from deep in the soil and the beneficial effects from increased dilation are outweighed by the detrimental migration of pore pressures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the field of motor control, two hypotheses have been controversial: whether the brain acquires internal models that generate accurate motor commands, or whether the brain avoids this by using the viscoelasticity of musculoskeletal system. Recent observations on relatively low stiffness during trained movements support the existence of internal models. However, no study has revealed the decrease in viscoelasticity associated with learning that would imply improvement of internal models as well as synergy between the two hypothetical mechanisms. Previously observed decreases in electromyogram (EMG) might have other explanations, such as trajectory modifications that reduce joint torques. To circumvent such complications, we required strict trajectory control and examined only successful trials having identical trajectory and torque profiles. Subjects were asked to perform a hand movement in unison with a target moving along a specified and unusual trajectory, with shoulder and elbow in the horizontal plane at the shoulder level. To evaluate joint viscoelasticity during the learning of this movement, we proposed an index of muscle co-contraction around the joint (IMCJ). The IMCJ was defined as the summation of the absolute values of antagonistic muscle torques around the joint and computed from the linear relation between surface EMG and joint torque. The IMCJ during isometric contraction, as well as during movements, was confirmed to correlate well with joint stiffness estimated using the conventional method, i.e., applying mechanical perturbations. Accordingly, the IMCJ during the learning of the movement was computed for each joint of each trial using estimated EMG-torque relationship. At the same time, the performance error for each trial was specified as the root mean square of the distance between the target and hand at each time step over the entire trajectory. The time-series data of IMCJ and performance error were decomposed into long-term components that showed decreases in IMCJ in accordance with learning with little change in the trajectory and short-term interactions between the IMCJ and performance error. A cross-correlation analysis and impulse responses both suggested that higher IMCJs follow poor performances, and lower IMCJs follow good performances within a few successive trials. Our results support the hypothesis that viscoelasticity contributes more when internal models are inaccurate, while internal models contribute more after the completion of learning. It is demonstrated that the CNS regulates viscoelasticity on a short- and long-term basis depending on performance error and finally acquires smooth and accurate movements while maintaining stability during the entire learning process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Establishing fabrication methods of carbon nanotubes (CNTs) is essential to realize many applications expected for CNTs. Catalytic growth of CNTs on substrates by chemical vapor deposition (CVD) is promising for direct fabrication of CNT devices, and catalyst nanoparticles play a crucial role in such growth. We have developed a simple method called "combinatorial masked deposition (CMD)", in which catalyst particles of a given series of sizes and compositions are formed on a single substrate by annealing gradient catalyst layers formed by sputtering through a mask. CMD enables preparation of hundreds of catalysts on a wafer, growth of single-walled CNTs (SWCNTs), and evaluation of SWCNT diameter distributions by automated Raman mapping in a single day. CMD helps determinations of the CVD and catalyst windows realizing millimeter-tall SWCNT forest growth in 10 min, and of growth curves for a series of catalysts in a single measurement when combined with realtime monitoring. A catalyst library prepared using CMD yields various CNTs, ranging from individuals, networks, spikes, and to forests of both SWCNTs and multi-walled CNTs, and thus can be used to efficiently evaluate self-organized CNT field emitters, for example. The CMD method is simple yet effective for research of CNT growth methods. © 2010 The Japan Society of Applied Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The widespread use of piled foundations in areas prone to liquefaction has led to significant research being carried out to understand their behaviour during earthquakes. A key challenge inmodelling this problemin a centrifuge is the installation procedure, and in most dynamic centrifuge experiments piles are installed before the test commences, either pushing the piles at 1g, or fixing the piles in the model and the sand poured around them. In this paper, a series of dynamic centrifuge experiments are described in which a 2 × 2 pile group is pushed into the model before the test begins and also once the centrifuge has reached the test acceleration. The paper focuses on the key differences which were observed in the pile group's response to the earthquake motion, and in particular, the very different settlement responses of the pile groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We live in an era of abundant data. This has necessitated the development of new and innovative statistical algorithms to get the most from experimental data. For example, faster algorithms make practical the analysis of larger genomic data sets, allowing us to extend the utility of cutting-edge statistical methods. We present a randomised algorithm that accelerates the clustering of time series data using the Bayesian Hierarchical Clustering (BHC) statistical method. BHC is a general method for clustering any discretely sampled time series data. In this paper we focus on a particular application to microarray gene expression data. We define and analyse the randomised algorithm, before presenting results on both synthetic and real biological data sets. We show that the randomised algorithm leads to substantial gains in speed with minimal loss in clustering quality. The randomised time series BHC algorithm is available as part of the R package BHC, which is available for download from Bioconductor (version 2.10 and above) via http://bioconductor.org/packages/2.10/bioc/html/BHC.html. We have also made available a set of R scripts which can be used to reproduce the analyses carried out in this paper. These are available from the following URL. https://sites.google.com/site/randomisedbhc/.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate prediction of time-changing covariances is an important problem in the modeling of multivariate financial data. However, some of the most popular models suffer from a) overfitting problems and multiple local optima, b) failure to capture shifts in market conditions and c) large computational costs. To address these problems we introduce a novel dynamic model for time-changing covariances. Over-fitting and local optima are avoided by following a Bayesian approach instead of computing point estimates. Changes in market conditions are captured by assuming a diffusion process in parameter values, and finally computationally efficient and scalable inference is performed using particle filters. Experiments with financial data show excellent performance of the proposed method with respect to current standard models.