10 resultados para Semisolid Structure Formation

em Cambridge University Engineering Department Publications Database


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The control of semi-crystalline polymers in thin films and in micrometer-sized patterns is attractive for (opto-)electronic applications. Electro-hydrodynamic lithography (EHL) enables the structure formation of organic crystalline materials on the micrometer length scale while at the same time exerting control over crystal orientation. This gives rise to well-defined micro-patterned arrays of uniaxially aligned polymer crystals. This study explores the interplay of EHL structure formation with crystal alignment and studies the mechanisms that give rise to crystal orientation in EHL-generated structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structure, formation energy, and energy levels of the various oxygen vacancies in Ta2O5 have been calculated using the λ phase model. The intra-layer vacancies give rise to unusual, long-range bonding rearrangements, which are different for each defect charge state. The 2-fold coordinated intra-layer vacancy is the lowest cost vacancy and forms a deep level 1.5 eV below the conduction band edge. The 3-fold intra-layer vacancy and the 2-fold inter-layer vacancy are higher cost defects, and form shallower levels. The unusual bonding rearrangements lead to low oxygen migration barriers, which are useful for resistive random access memory applications. © 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the effect of a perpendicular magnetic field on the single-particle charging spectrum of a graphene quantum dot embedded inline with a nanoribbon. We observe uniform shifts in the single-particle spectrum which coincide with peaks in the magnetoconductance, implicating Landau level condensation and edge state formation as the mechanism underlying magnetic field-enhanced transmission through graphene nanostructures. The experimentally determined ratio of bulk to edge states is supported by single-particle band-structure simulations, while a fourfold beating of the Coulomb blockade transmission amplitude points to many-body interaction effects during Landau level condensation of the ν=0 state. © 2012 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of growth temperature and V/III ratio on the morphology and crystallographic phases of InP nanowires that are grown by metal organic chemical vapour deposition have been studied. We show that higher growth temperatures or higher V/III ratios promote the formation of wurtzite nanowires while zinc-blende nanowires are favourableat lower growth temperatures and lower V/III ratios. A schematic map of distribution of zinc-blende and wurtzite structures has been developed in the range of growth temperatures (400-510 °C) and V/III ratios (44 to 700) investigated in this study. © 2010 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metallic silicides have been used as contact materials on source/drain and gate in metal-oxide semiconductor (MOS) structure for 40 years. Since the 65 nm technology node, NiSi is the preferred material for contact in microelectronic due to low resistivity, low thermal budget, and low Si consumption. Ni(Pt)Si with 10 at.% Pt is currently employed in recent technologies since Pt allows to stabilize NiSi at high temperature. The presence of Pt and the very low thickness (<10 nm) needed for the device contacts bring new concerns for actual devices. In this work, in situ techniques [X-ray diffraction (XRD), X-ray reflectivity (XRR), sheet resistance, differential scanning calorimetry (DSC)] were combined with atom probe tomography (APT) to study the formation mechanisms as well as the redistribution of dopants and alloy elements (Pt, Pd.) during the silicide formation. Phenomena like nucleation, lateral growth, interfacial reaction, diffusion, precipitation, and transient phase formation are investigated. The effect of alloy elements (Pt, Pd.) and dopants (As, B.) as well as stress and defects induced by the confinement in devices on the silicide formation mechanism and alloying element redistribution is examined. In particular APT has been performed for the three-dimensional (3D) analysis of MOSFET at the atomic scale. The advances in the understanding of the mechanisms of formation and redistribution are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of the turbulence-chemistry interaction (TCI) for n-heptane sprays under diesel engine conditions has been investigated by means of computational fluid dynamics (CFD) simulations. The conditional moment closure approach, which has been previously validated thoroughly for such flows, and the homogeneous reactor (i.e. no turbulent combustion model) approach have been compared, in view of the recent resurgence of the latter approaches for diesel engine CFD. Experimental data available from a constant-volume combustion chamber have been used for model validation purposes for a broad range of conditions including variations in ambient oxygen (8-21% by vol.), ambient temperature (900 and 1000 K) and ambient density (14.8 and 30 kg/m3). The results from both numerical approaches have been compared to the experimental values of ignition delay (ID), flame lift-off length (LOL), and soot volume fraction distributions. TCI was found to have a weak influence on ignition delay for the conditions simulated, attributed to the low values of the scalar dissipation relative to the critical value above which auto-ignition does not occur. In contrast, the flame LOL was considerably affected, in particular at low oxygen concentrations. Quasi-steady soot formation was similar; however, pronounced differences in soot oxidation behaviour are reported. The differences were further emphasised for a case with short injection duration: in such conditions, TCI was found to play a major role concerning the soot oxidation behaviour because of the importance of soot-oxidiser structure in mixture fraction space. Neglecting TCI leads to a strong over-estimation of soot oxidation after the end of injection. The results suggest that for some engines, and for some phenomena, the neglect of turbulent fluctuations may lead to predictions of acceptable engineering accuracy, but that a proper turbulent combustion model is needed for more reliable results. © 2014 Taylor & Francis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents a new concept of locomotion for wheeled or legged robots through an object-free space. The concept is inspired by the behaviour of spiders forming silk threads to move in 3D space. The approach provides the possibility of variation in thread diameter by deforming source material, therefore it is useful for a wider coverage of payload by mobile robots. As a case study, we propose a technology for descending locomotion through a free space with inverted formation of threads in variable diameters. Inverted thread formation is enabled with source material thermoplastic adhesive (TPA) through thermally-induced phase transition. To demonstrate the feasibility of the technology, we have designed and prototyped a 300-gram wheeled robot that can supply and deform TPA into a thread and descend with the thread from an existing hanging structure. Experiment results suggest repeatable inverted thread formation with a diameter range of 1.1-4.5 mm, and a locomotion speed of 0.73 cm per minute with a power consumption of 2.5 W. © 2013 IEEE.