4 resultados para Self-exchange Rates

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peptides and proteins possess an inherent propensity to self-assemble into generic fibrillar nanostructures known as amyloid fibrils, some of which are involved in medical conditions such as Alzheimer disease. In certain cases, such structures can self-propagate in living systems as prions and transmit characteristic traits to the host organism. The mechanisms that allow certain amyloid species but not others to function as prions are not fully understood. Much progress in understanding the prion phenomenon has been achieved through the study of prions in yeast as this system has proved to be experimentally highly tractable; but quantitative understanding of the biophysics and kinetics of the assembly process has remained challenging. Here, we explore the assembly of two closely related homologues of the Ure2p protein from Saccharomyces cerevisiae and Saccharomyces paradoxus, and by using a combination of kinetic theory with solution and biosensor assays, we are able to compare the rates of the individual microscopic steps of prion fibril assembly. We find that for these proteins the fragmentation rate is encoded in the structure of the seed fibrils, whereas the elongation rate is principally determined by the nature of the soluble precursor protein. Our results further reveal that fibrils that elongate faster but fracture less frequently can lose their ability to propagate as prions. These findings illuminate the connections between the in vitro aggregation of proteins and the in vivo proliferation of prions, and provide a framework for the quantitative understanding of the parameters governing the behavior of amyloid fibrils in normal and aberrant biological pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rate and direction of regrowth of amorphous layers, created by self-implantation, in silicon-on-sapphire (SOS) have been studied using time resolved reflectivity (TRR) experiments performed simultaneously at two wavelengths. Regrowth of an amorphous layer towards the surface was observed in specimens implanted with 3 multiplied by (times) 10**1**5Si** plus /cm**2 at 50keV and regrowth of a buried amorphous layer, from a surface seed towards the sapphire, was observed in specimens implanted with 1 multiplied by (times) 10**1**5Si** plus /cm**2 at 175keV. Rapid isothermal heating to regrow the layers was performed in an electron beam annealing system. The combination of 514. 5nm and 632. 8nm wavelengths was found to be particularly useful for TRR studies since the high absorption in amorphous silicon, at the shorter wavelength, means that the TRR trace is not complicated by reflection from the silicon-sapphire interface until regrowth is nearly complete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single molecule force spectroscopy is a technique that can be used to probe the interaction force between individual biomolecular species. We focus our attention on the tip and sample coupling chemistry, which is crucial to these experiments. We utilised a novel approach of mixed self-assembled monolayers of alkanethiols in conjunction with a heterobifunctional crosslinker. The effectiveness of the protocol is demonstrated by probing the biotin-avidin interaction. We measured unbinding forces comparable to previously reported values measured at similar loading rates. Specificity tests also demonstrated a significant decrease in recognition after blocking with free avidin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The RF locking of a self-Q-switching diode laser is shown to reduce the jitter of a 2.48 GHz train of 1 W peak power picosecond pulses to less than 300 fs. By using direct modulation of the loss in the Q-switched laser, direct encoding of data has been achieved at rates in excess of 2 Gbit/s.