6 resultados para Self Potential

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Life cycle assessment has been used to investigate the environmental and economic sustainability of a potential operation in the UK in which bioethanol is produced from the hydrolysis and subsequent fermentation of coppice willow. If the willow were grown on idle arable land in the UK, or, indeed, in Eastern Europe and imported as wood chips into the UK, it was found that savings of greenhouse gas emissions of 70-90%, when compared to fossil-derived gasoline on an energy basis, would be possible. The process would be energetically self-sufficient, as the co-products, e.g. lignin and unfermented sugars, could be used to produce the process heat and electricity, with surplus electricity being exported to the National Grid. Despite the environmental benefits, the economic viability is doubtful at present. However, the cost of production could be reduced significantly if the willow were altered by breeding to improve its suitability for hydrolysis and fermentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferrocene-terminated self-assembled monolayers (Fc-SAMs) are one of the most studied molecular aggregates on metal electrodes. They are easy to fabricate and provide a stable and reproducible system to investigate the effect of the microenvironment on the electron transfer parameters. We propose a novel application for Fc-SAMs, the detection of molecular interactions, based on the modification of the SAM with target-specific receptors. Mixed SAMs were fabricated by coimmobilization on Au electrodes of thiolated alkane chains with three different head groups: hydroxy terminating head group, ferrocene head group, and a functional head group such as biotin. Upon binding, the intrinsic electric charge of the target (e.g., streptavidin) modifies the electrostatic potential at the plane of electron transfer, causing a shift in the formal potential E degrees '. The SAMs were characterized by AC voltammetry. The detection mechanism is confirmed by measurements of formal potential as a function of electrolyte pH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-biased Terfenol-D 2-2 composites exhibit high frequency of actuation and good magnetomechanical properties; however, their potential usefulness is highly dependent on their magnetoacoustic properties, particularly for ultrasonic applications. The speed of sound, c, and its variation with an externally applied magnetic field have been measured for the above composites using a 10 MHz longitudinal pulse. When the sound propagates parallel to the layers, the acoustic impedance was found to be independent of the external applied field, and lower than that for bulk Terfenol-D. The magnetomechanical coupling coefficient was found to be generally low (up to 0.35) and dependent on the volume ratio of materials, being higher for the specimens with greater content of Terfenol-D. The low attenuation, low acoustic impedance, and high frequency of actuation make this structure an interesting alternative for use in underwatersound navigation and ranging and other ultrasonic applications. When the pulse propagates orthogonal to the layers, c was found to vary by up to 3% with the application of an external field, but the acoustic attenuation was found to be very high due to the multiple reflections produced at the interfaces between the layers. This latter phenomenon has been calculated theoretically. © 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel film bulk acoustic resonator (FBAR) with two resonant frequencies which have opposite reactions to temperature changes has been designed. The two resonant modes respond differently to changes in temperature and pressure, with the frequency shift being linearly correlated with temperature and pressure changes. By utilizing the FBAR's sealed back trench as a cavity, an on-chip single FBAR sensor suitable for measuring pressure and temperature simultaneously is proposed and demonstrated. The experimental results show that the pressure coefficient of frequency for the lower frequency peak of the FBAR sensors is approximately -17.4 ppm kPa-1, while that for the second peak is approximately -6.1 ppm kPa-1, both of them being much more sensitive than other existing pressure sensors. This dual mode on-chip pressure sensor is simple in structure and operation, can be fabricated at very low cost, and yet requires no specific package, therefore has great potential for applications. © 2012 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we investigate a number of fuel assembly design options for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on axially heterogeneous fuel assembly structure in order to improve fertile to fissile conversion ratio. One of the main assumptions of the current study was to restrict the fuel assembly geometry to a single axial fissile zone "sandwiched" between two fertile blanket zones. The main objective was to study the effect of the most important design parameters, such as dimensions of fissile and fertile zones and average void fraction, on the net breeding of 233U. The main design challenge in this respect is that the fuel breeding potential is at odds with axial power peaking and therefore limits the maximum achievable core power rating. The calculations were performed with BGCore system, which consists of MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly with reflective radial boundaries was modeled applying simplified restrictions on maximum central line fuel temperature and Critical Power Ratio. It was found that axially heterogeneous fuel assembly design with single fissile zone can potentially achieve net breeding. In this case however, the achievable core power density is roughly one third of the reference BWR core.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A synthetic strategy for fabricating a dense amine functionalized self-assembled monolayer (SAM) on hydroxylated surfaces is presented. The assembly steps are monitored by X-ray photoelectron spectroscopy, Fourier transform infrared- attenuated total reflection, atomic force microscopy, variable angle spectroscopic ellipsometry, UV-vis surface spectroscopy, contact angle wettability, and contact potential difference measurements. The method applies alkylbromide-trichlorosilane for the fabrication of the SAM followed by surface transformation of the bromine moiety to amine by a two-step procedure: S(N)2 reaction that introduces the hidden amine, phthalimide, followed by the removal of the protecting group and exposing the free amine. The use of phthalimide moiety in the process enabled monitoring the substitution reaction rate on the surface (by absorption spectroscopy) and showed first-order kinetics. The simplicity of the process, nonharsh reagents, and short reaction time allow the use of such SAMs in molecular nanoelectronics applications, where complete control of the used SAM is needed. The different molecular dipole of each step of the process, which is verified by DFT calculations, supports the use of these SAMs as means to tune the electronic properties of semiconductors and for better synergism between SAMs and standard microelectronics processes and devices.