3 resultados para Scholars, Muslim
em Cambridge University Engineering Department Publications Database
Resumo:
Purpose - The purpose of this paper is to explore the concept of performance plumbing, arguing that too often performance management systems in organisations are not correctly installed. Without the appropriate plumbing, performance management systems do not drive organisational change and improvement. Design/methodology/approach - The paper draws on the consultancy experiences of two of the authors, as well as the research of the third. Specific case examples are provided throughout the paper to illustrate the points being made. Findings - The paper argues that the key elements of a plumbed-in performance management system are: performance architecture; performance insights; performance focus; and performance action. Taken together, these four elements provide the necessary plumbing to enable performance management systems to deliver real value. Research limitations/implications - The paper draws on the experience of the authors, rather than a formally designed piece of research. The ideas presented in the paper would therefore benefit from further investigation and testing. Originality/value - The paper will be valuable to scholars and practitioners interested in ensuring that performance management systems deliver lasting value. © Emerald Group Publishing Limited.
Resumo:
This paper presents a review undertaken to understand the concept of 'future-proofing' the energy performance of buildings. The long lifecycles of the building stock, the impacts of climate change and the requirements for low carbon development underline the need for long-term thinking from the early design stages. 'Future-proofing' is an emerging research agenda with currently no widely accepted definition amongst scholars and building professionals. In this paper, it refers to design processes that accommodate explicitly full lifecycle perspectives and energy trends and drivers by at least 2050, when selecting energy efficient measures and low carbon technologies. A knowledge map is introduced, which explores the key axes (or attributes) for achieving a 'future-proofed' energy design; namely, coverage of sustainability issues, lifecycle thinking, and accommodating risks and uncertainties that affect the energy consumption. It is concluded that further research is needed so that established building energy assessment methods are refined to better incorporate future-proofing. The study follows an interdisciplinary approach and is targeted at design teams with aspirations to achieve resilient and flexible low-energy buildings over the long-term. © 2012 Elsevier Ltd.