14 resultados para Scatter
em Cambridge University Engineering Department Publications Database
Resumo:
A turbulent boundary-layer flow over a rough wall generates a dipole sound field as the near-field hydrodynamic disturbances in the turbulent boundary-layer scatter into radiated sound at small surface irregularities. In this paper, phased microphone arrays are applied to the measurement and simulation of surface roughness noise. The radiated sound from two rough plates and one smooth plate in an open jet is measured at three streamwise locations, and the beamforming source maps demonstrate the dipole directivity. Higher source strengths can be observed on the rough plates which also enhance the trailing-edge noise. A prediction scheme in previous theoretical work is used to describe the strength of a distribution of incoherent dipoles and to simulate the sound detected by the microphone array. Source maps of measurement and simulation exhibit satisfactory similarities in both source pattern and source strength, which confirms the dipole nature and the predicted magnitude of roughness noise. However, the simulations underestimate the streamwise gradient of the source strengths and overestimate the source strengths at the highest frequency. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
We consider a straight cylindrical duct with a steady subsonic axial flow and a reacting boundary (e.g. an acoustic lining). The wave modes are separated into ordinary acoustic duct modes, and surface modes confined to a small neighbourhood of the boundary. Many researchers have used a mass-spring-damper boundary model, for which one surface mode has previously been identified as a convective instability; however, we show the stability analysis used in such cases to be questionable. We investigate instead the stability of the surface modes using the Briggs-Bers criterion for a Flügge thin-shell boundary model. For modest frequencies and wavenumbers the thin-shell has an impedance which is effectively that of a mass-spring-damper, although for the large wavenumbers needed for the stability analysis the thin-shell and mass-spring-damper impedances diverge, owing to the thin shell's bending stiffness. The thin shell model may therefore be viewed as a regularization of the mass-spring-damper model which accounts for nonlocally-reacting effects. We find all modes to be stable for realistic thin-shell parameters, while absolute instabilities are demonstrated for extremely thin boundary thicknesses. The limit of vanishing bending stiffness is found to be a singular limit, yielding absolute instabilities of arbitrarily large temporal growth rate. We propose that the problems with previous stability analyses are due to the neglect of something akin to bending stiffness in the boundary model. Our conclusion is that the surface mode previously identified as a convective instability may well be stable in reality. Finally, inspired by Rienstra's recent analysis, we investigate the scattering of an acoustic mode as it encounters a sudden change from a hard-wall to a thin-shell boundary, using a Wiener-Hopf technique. The thin-shell is considered to be clamped to the hard-wall. The acoustic mode is found to scatter into transmitted and reflected acoustic modes, and surface modes strongly linked to the solid waves in the boundary, although no longitudinal or transverse waves within the boundary are excited. Examples are provided that demonstrate total transmission, total reflection, and a combination of the two. This thin-shell scattering problem is preferable to the mass-spring-damper scattering problem presented by Rienstra, since the thin-shell problem is fully determined and does not need to appeal to a Kutta-like condition or the inclusion of an instability in order to avoid a surface-streamline cusp at the boundary change.
Resumo:
This paper presents the results from 10 minidrum centrifuge tests conducted at the Schofield Centre, compiled with 4 additional test results from Thusyanthan et al., 2008. All these tests were designed to measure the uplift resistance of a pipeline installed into stiff clay by trenching and backfilling, then uplifted approximately 3 months after installation. All tests were conducted at 1:30 scale using soil obtained from offshore clay samples. Experimental results show that clay blocks remained intact after 3 prototype months of consolidation, and were lifted rather than sheared during pipe pullout. The uplift resistance therefore depends on the weight of the soil cover and the shearing resistance mobilised at the softening contact points between the intact blocks and within the interstitial slurry. Slow drained pullout led to lower resistance than fast pullout, indicating that the drained response is critical for design. The varying scatter shows that peak uplift resistance is very sensitive to the arrangement of the backfill blocks when the cover and pipe diameter are comparable to the block size. Copyright © 2009 by The International Society of Offshore and Polar Engineers (ISOPE).
Resumo:
This paper presents an incremental learning solution for Linear Discriminant Analysis (LDA) and its applications to object recognition problems. We apply the sufficient spanning set approximation in three steps i.e. update for the total scatter matrix, between-class scatter matrix and the projected data matrix, which leads an online solution which closely agrees with the batch solution in accuracy while significantly reducing the computational complexity. The algorithm yields an efficient solution to incremental LDA even when the number of classes as well as the set size is large. The incremental LDA method has been also shown useful for semi-supervised online learning. Label propagation is done by integrating the incremental LDA into an EM framework. The method has been demonstrated in the task of merging large datasets which were collected during MPEG standardization for face image retrieval, face authentication using the BANCA dataset, and object categorisation using the Caltech101 dataset. © 2010 Springer Science+Business Media, LLC.
Resumo:
This paper presents the results of a study that specifically looks at the relationships between measured user capabilities and product demands in a sample of older and disabled users. An empirical study was conducted with 19 users performing tasks with four consumer products (a clock-radio, a mobile phone, a blender and a vacuum cleaner). The sensory, cognitive and motor capabilities of each user were measured using objective capability tests. The study yielded a rich dataset comprising capability measures, product demands, outcome measures (task times and errors), and subjective ratings of difficulty. Scatter plots were produced showing quantified product demands on user capabilities, together with subjective ratings of difficulty. The results are analysed in terms of the strength of correlations observed taking into account the limitations of the study sample. Directions for future research are also outlined. © 2011 Springer-Verlag.
Resumo:
The permeability of asphalt concrete has been the subject of much study by pavement engineers over the last decade. The work undertaken has tended to focus on high air voids as the primary indicator of permeable asphalt concrete. This paper presents a simple approach for understanding the parameters that affect permeability. Principles explained by Taylor in 1956 in channel theory work for soils are used to derive a new parameter-representative pore size. Representative pore size is related to the air voids in the compacted mix and the D75 of the asphalt mix grading curve. Collected Superpave permeability data from published literature and data collected by the writers at the Queensland Department of Transport and Main Roads is shown to be better correlated with representative pore size than air voids, reducing the scatter considerably. Using the database of collected field and laboratory permeability values an equation is proposed that pavement engineers can use to estimate the permeability of in-place pavements. © 2011 ASCE.
Resumo:
The analysis of scientific data is integral to materials engineering and science. The correlation between measured variables is often quantified by estimating the coefficient of determination or the r2 value. This is the recognised procedure for determining linear relationships. The authors review the derivation of the r2 value and derive an associated quantity, termed the relative deviation (RD), which is the ratio of the root mean square of the deviations about the fitted line to the root mean square of the deviations about the y bar line expressed as a percentage. The relative deviation has an advantage over the coefficient of determination in that it has greater numerical sensitivity to changes in the spread of data about the fitted line, especially when the scatter is small. In addition, the relative deviation is able to define, in percentage terms, the reduction in scatter when different independent variables are correlated with a common dependent variable. Four case studies in the materials field (aggregate crushing value, Atterberg limits, permeability and creep of asphalt) from work carried out at the Queensland Main Roads Department are presented to show the use of the new parameter RD.
Resumo:
This paper demonstrates the application of laser Doppler velocimetry (LDV) and particle image velocimetry (PIV) techniques to a particle-laden reacting flow of pulverized coal. A laboratory-scale open-type annular burner is utilized to generate velocity profiles of coal particles and micrometric alumina particles. Pair-wise two-component LDV measurements and high-speed stereo PIV measurements provide three-dimensional velocity components of the flow field. A detailed comparison of velocities for alumina and coal particle seeding revealed differences attributed to the wide size distribution of coal particles. In addition, the non-spherical shape and high flame luminosity associated with coal particle combustion introduces noise to the Mie scatter images. The comparison of mean and RMS velocities measured by LDV and PIV techniques showed that PIV measurements are affected by the wide size distribution of coal particles, whereas LDV measurements become biased toward the velocity of small particles, as signals from large particles are rejected. This small-particle bias is also reflected in the spectral characteristics for both techniques, which are in good agreement within the range of frequencies accessible. PIV measurements showed an expected lack of response of large coal particles to the turbulence fluctuations. The overall good agreement between LDV and PIV measurements demonstrates the applicability of the high-speed PIV technique to a particle-laden, high luminosity coal flame while highlighting some of its limitations. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Measurements of particulate matter (PM) from spark ignition (SI) engine exhaust using dilution tunnels will become more prevalent as emission standards are tightened. Hence, a study of the dilution process was undertaken in order to understand how various dilution related parameters affect the accuracy with which PM sizes and concentrations can be determined. A SI and a compression ignition (CI) engine were separately used to examine parameters of the dilution process; the present work discusses the results in the context of SI exhaust dilution. A Scanning Mobility Particle Sizer (SMPS) was used to measure the size distribution, number density, and volume fraction of PM. Temperature measurements in the exhaust pipe and dilution tunnel reveal the degree of mixing between exhaust and dilution air, the effect of flowrate on heat transfer from undiluted and diluted exhaust to the environment, and the minimum permissible dilution ratio for a maximum sample temperature of 52°C. Measurements of PM concentrations as a function of dilution ratio show the competing effects of temperature and particle/vapor concentrations on particle growth dynamics, which result in a range of dilution ratios-from 13 to 18-where the effect of dilution ratio, independent of flowrate, is kept to a minimum. This range of dilution ratios is therefore optimal in order to achieve repeatable PM concentration measurements. Particle dynamics during transit through the tunnel operating at the optimal dilution ratio was found statistically insignificant compared to data scatter. Such small differences in number concentration may be qualitatively representative of particle losses for SI exhaust, but small increases in PM volume fraction during transit through the tunnel may significantly underestimate accretion of mass due to unburned hydrocarbons (HCs) emitted by SI engines. The fraction of SI-derived PM mass due to adsorbed/absorbed vapor, estimated from these data, is consistent with previous chemical analyses of PM. © 1998 Society of Automotive Engineers, Inc.
Resumo:
An analysis is presented of a database of 67 tests on 21 clays and silts of undrained shear stress-strain data of fine-grained soils. Normalizations of secant G in terms of initial mean effective stress p9 (i.e., G=p9 versus log g) or undrained shear strength cu (i.e., G=cu versus log g) are shown to be much less successful in reducing the scatter between different clays than the approach that uses the maximum shear modulus,Gmax, a technique still not universally adopted by geotechnical researchers and constitutive modelers. Analysis of semiempirical expressions forGmax is presented and a simple expression that uses only a void-ratio function and a confining-stress function is proposed. This is shown to be superior to a Hardin-style equation, and the void ratio function is demonstrated as an alternative to an overconsolidation ratio (OCR) function. To derive correlations that offer reliable estimates of secant stiffness at any required magnitude of working strain, secant shear modulus G is normalized with respect to its small-strain value Gmax, and shear strain g is normalized with respect to a reference strain gref at which this stiffness has halved. The data are corrected to two standard strain rates to reduce the discrepancy between data obtained from static and cyclic testing. The reference strain gref is approximated as a function of the plasticity index.Aunique normalized shear modulus reduction curve in the shape of a modified hyperbola is fitted to all the available data up to shear strains of the order of 1%. As a result, good estimates can be made of the modulus reduction G/Gmax ±30% across all strain levels in approximately 90% of the cases studied. New design charts are proposed to update the commonly used design curves. © 2013 American Society of Civil Engineers.
Resumo:
A turbulent boundary-layer flow over a rough wall generates a dipole sound field as the near-field hydrodynamic disturbances in the turbulent boundary-layer scatter into radiated sound at small surface irregularities. In this paper, phased microphone arrays are applied to the experimental study of surface roughness noise. The radiated sound from two rough plates and one smooth plate in an open jet is measured at three streamwise locations, and the beamforming source maps demonstrate the dipole directivity. Higher source strengths can be observed in the rough plates than the smooth plate, and the rough plates also enhance the trailing-edge noise. A prediction scheme in previous theoretical work is used to describe the strength of a distribution of incoherent dipoles over the rigid plate and to simulate the sound detected by the microphone array. Source maps of measurement and simulation exhibit encouraging similarities in both source pattern and source strength, which confirms the dipole nature and the predicted magnitude of roughness noise. The simulations underestimate the streamwise gradient of the source strengths and overestimate the source strengths at the highest frequency. © 2007 by Yu Liu and Ann P. Dowling.
Resumo:
We present a simple and semi-physical analytical description of the current-voltage characteristics of amorphous oxide semiconductor thin-film transistors in the above-threshold and sub-threshold regions. Both regions are described by single unified expression that employs the same set of model parameter values directly extracted from measured terminal characteristics. The model accurately reproduces measured characteristics of amorphous semiconductor thin film transistors in general, yielding a scatter of < 4%. © 1980-2012 IEEE.
Resumo:
Five Large Eddy Simulation (LES) and hybrid RANS-NLES (Reynolds-Averaged Navier-Stokes-Numerical-LES) methods are used to simulate flow through a labyrinth seal geometry and are contrasted with RANS solutions. Results show that LES and RANS-NLES is capable of accurately predicting flow behaviour of two seal flows with a scatter of less than 5 %. RANS solutions show the potential to perform poorly for the turbulence models tested. LES and hybrid RANS-NLES are found to be consistent and in agreement with measurements, providing a flexible numerical platform for design investigations. It also allows greater flow physics insights. © Springer Science+Business Media Dordrecht 2013.