10 resultados para Scale development

em Cambridge University Engineering Department Publications Database


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper develops the basis for a self-consistent, operationally useful, reactive pollutant dispersion model, for application in urban environments. The model addresses the multi-scale nature of the physical and chemical processes and the interaction between the different scales. The methodology builds on existing techniques of source apportionment in pollutant dispersion and on reduction techniques of detailed chemical mechanisms. © 2005 Published by Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a comparison between theoretical predictions and experimental results from a pin-on-disc test rig exploring friction-induced vibration. The model is based on a linear stability analysis of two systems coupled by sliding contact at a single point. Predictions are compared with a large volume of measured squeal initiations that have been post-processed to extract growth rates and frequencies at the onset of squeal. Initial tests reveal the importance of including both finite contact stiffness and a velocity-dependent dynamic model for friction, giving predictions that accounted for nearly all major clusters of squeal initiations from 0 to 5 kHz. However, a large number of initiations occurred at disc mode frequencies that were not predicted with the same parameters. These frequencies proved remarkably difficult to destabilise, requiring an implausibly high coefficient of friction. An attempt has been made to estimate the dynamic friction behaviour directly from the squeal initiation data, revealing complex-valued frequency-dependent parameters for a new model of linearised dynamic friction. These new parameters readily destabilised the disc modes and provided a consistent model that could account for virtually all initiations from 0 to 15 kHz. The results suggest that instability thresholds for a wide range of squeal-type behaviour can be predicted, but they highlight the central importance of a correct understanding and accurate description of dynamic friction at the sliding interface. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wave contouring raft system is the outcome of ideas initiated and developed by Sir Christopher Cockerell from 1972 onwards. His objective was to develop a wave energy device which is within the bounds of current technology. It should consist of simple, relatively small units, amenable to quantity production, which would enable a power generating system to be built up and commissioned in stages according to needs and production capability. This thinking led to the investigation of chains of pontoons, hinged together so that the passage of a wave down the chain causes the pontoons to oscillate relative to one another. Energy is extracted from the sea by applying a torque about the hinges to damp the motion. The work has involved extensive model testing in wave tanks and the building and testing of a 3-unit 1/10 scale power generating installation in the Solent, as well as design studies for a full size installation for Atlantic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transient test facilities offer the potential for the simultaneous study of turbine aerodynamic performance, unsteady flow phenomena and the heat transfer characteristics of a turbine stage. This paper describes the development of aerodynamic performance measurement techniques in the Oxford Rotor Facility (ORF). The solutions to the technological issues involved with transient testing presented in this paper are expected to achieve levels of precision uncertainty comparable with traditional steady flow test rigs. The theoretical background to the measurement of aerodynamic performance is presented together with a comprehensive pre-test uncertainty analysis. The instrumentation scheme for the measurement of stage mass flow rate is discussed in detail, the measurements of shaft power, total inlet enthalpy, and stage pressure ratio are also outlined. The current working section features a 62% scale, 1-1/2 stage, high-pressure shroudless transonic turbine. The required inlet flow conditions are provided by an Isentropic Light Piston Tunnel (ILPT) with a quasi-steady state run time of approximately 70ms. The testing is conducted at engine representative specific speed, pressure ratio, gas-to-wall temperature ratio, Mach number and Reynolds number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Describes progress in the last 12 months which has established bag designs and fabrication techniques, giving greater confidence in the life and cost of these components. A quarter scale bag is under construction. Extensive tank testing has also established life time bending moment and mooring load envelopes, enabling hull and mooring design to proceed. A computer simulation programme has been used to check tank model results and to establish turbine and generator operating conditions. This has allowed generation and transmission component design to proceed, and suggests a high operating efficiency can be maintained with a simple control regime. Simple solutions in minor areas such as valve design and damage stability control add to the picture of steady progress in establishing the Lancaster Flexible Bag 's feasibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innovation is a critical factor in ensuring commercial success within the area of medical technology. Biotechnology and Healthcare developments require huge financial and resource investment, in-depth research and clinical trials. Consequently, these developments involve a complex multidisciplinary structure, which is inherently full of risks and uncertainty. In this context, early technology assessment and 'proof of concept' is often sporadic and unstructured. Existing methodologies for managing the feasibility stage of medical device development are predominantly suited to the later phases of development and favour detail in optimisation, validation and regulatory approval. During these early phases, feasibility studies are normally conducted to establish whether technology is potentially viable. However, it is not clear how this technology viability is currently measured. This paper aims to redress this gap through the development of a technology confidence scale, as appropriate explicitly to the feasibility phase of medical device design. These guidelines were developed from analysis of three recent innovation studies within the medical device industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our recent efforts of using large-eddy simulation (LES) type methods to study complex and realistic geometry single stream and co-flow nozzle jets and acoustics are summarized in this paper. For the LES, since the solver being used tends towards having dissipative qualities, the subgrid scale (SGS) model is omitted, giving a numerical type LES (NLES). To overcome near wall streak resolution problems a near wall RANS (Reynolds averaged Navier-Stokes) model is smoothly blended in the LES making a hybrid RANS-NLES approach. Several complex nozzle geometries including the serrated (chevron) nozzle, realistic co-axial nozzles with eccentricity, pylon and wing-flap are discussed. The hybrid RANS-NLES simulations show encouraging predictions for the chevron jets. The chevrons are known to increase the high frequency noise at high polar angles, but decrease the low frequency noise at lower angles. The deflection effect of the potential core has an important mechanism of noise reduction. As for co-axial nozzles, the eccentricity, the pylon and the deployed wing-flap are shown to influence the flow development, especially the former to the length of potential core and the latter two having a significant impact on peak turbulence levels and spreading rates. The studies suggest that complex and real geometry effects are influential and should be taken into count when moving towards real engine simulations. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The behaviour of cast-iron tunnel segments used in London Underground tunnels was investigated using the 3-D finite element (FE) method. A numerical model of the structural details of cast-iron segmental joints such as bolts, panel and flanges was developed and its performance was validated against a set of full-scale tests. Using the verified model, the influence of structural features such as caulking groove and bolt pretension was examined for both rotational and shear loading conditions. Since such detailed modelling of bolts increases the computational time when a full scale segmental tunnel is analysed, it is proposed to replace the bolt model to a set of spring models. The parameters for the bolt-spring models, which consider the geometry and material properties of the bolt, are proposed. The performance of the combined bolt-spring and solid segmental models are evaluated against a more conventional shell-spring model. © 2014 Elsevier Ltd.