8 resultados para Sandy Hook Bay

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Offshore and onshore buried pipelines under high operating temperature and pressures may lead to upheaval buckling (UHB) if sufficient soil cover is not present to prevent the upward movement of the pipeline. In regions where seasonal changes involve ground soil undergoing freezing-thawing cycles, the uplift resistance from soil cover may be minimum when the soil is undergoing thawing. This paper presents the results from 2 directly-comparable minidrum centrifuge tests conducted at the Schofield Centre, University of Cambridge, to investigate the difference in uplift resistance responses between fully-saturated and thawed sandy backfill conditions. Both tests were conducted drained at 30g using an 8.6 mm diameter aluminium model pipe, corresponding to a prototype pipe diameter of 258 mm. The soil cover/pipe diameter ratio, H/D, was kept at 1. Fraction E fine silica sand was used as the backfill. Preliminary experimental results indicated that the ultimate uplift resistance of a thawing sand backfill to be lower than that of a fully saturated sand backfill. This suggests that in regions where backfill soil undergoes freeze-thaw cycles, the thawing backfill may be more critical than fully saturated backfill for uplift resistance. The 2-dimensional displacement field during the experiment was accurately measured and analysed using the Particle Image Velocimetry technique. Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wave velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation. © 2013 AIP Publishing LLC.