2 resultados para SURFACE-MOLECULE GP82

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much effort has focussed in recent years on probing the interactions of small molecules with amyloid fibrils and other protein aggregates. Understanding and control of such interactions are important for the development of diagnostic and therapeutic strategies in situations where protein aggregation is associated with disease. In this perspective article we give an overview over the toolbox of biophysical methods for the study of such amyloid-small molecule interactions. We discuss in detail two recently developed techniques within this framework: linear dichroism, a promising extension of the more traditional spectroscopic techniques, and biosensing methods, where surface-bound amyloid fibrils are exposed to solutions of small molecules. Both techniques rely on the measurement of physical properties that are very directly linked to the binding of small molecules to amyloid aggregates and therefore provide an attractive route to probe these important interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The highly sensitive and molecule-specific technique of surface-enhanced Raman spectroscopy (SERS) generates high signal enhancements via localized optical fields on nanoscale metallic materials, which can be tuned by manipulation of the surface roughness and architecture on the submicrometer level. We investigate gold-functionalized vertically aligned carbon nanotube forests (VACNTs) as low-cost straightforward SERS nanoplatforms. We find that their SERS enhancements depend on their diameter and density, which are systematically optimized for their performance. Modeling of the VACNT-based SERS substrates confirms consistent dependence on structural parameters as observed experimentally. The created nanostructures span over large substrate areas, are readily configurable, and yield uniform and reproducible SERS enhancement factors. Further fabricated micropatterned VACNTs platforms are shown to deliver multiplexed SERS detection. The unique properties of CNTs, which can be synergistically utilized in VACNT-based substrates and patterned arrays, can thus provide new generation platforms for SERS detection. © 2012 American Chemical Society.