31 resultados para SURFACE-AREA
em Cambridge University Engineering Department Publications Database
Resumo:
We demonstrate that the Mott metal-insulator transition (MIT) in single crystalline VO(2) nanowires is strongly mediated by surface stress as a consequence of the high surface area to volume ratio of individual nanowires. Further, we show that the stress-induced antiferromagnetic Mott insulating phase is critical in controlling the spatial extent and distribution of the insulating monoclinic and metallic rutile phases as well as the electrical characteristics of the Mott transition. This affords an understanding of the relationship between the structural phase transition and the Mott MIT.
Resumo:
Using transient terahertz photoconductivity measurements, we have made noncontact, room temperature measurements of the ultrafast charge carrier dynamics in InP nanowires. InP nanowires exhibited a very long photoconductivity lifetime of over 1 ns, and carrier lifetimes were remarkably insensitive to surface states despite the large nanowire surface area-to-volume ratio. An exceptionally low surface recombination velocity (170 cm/s) was recorded at room temperature. These results suggest that InP nanowires are prime candidates for optoelectronic devices, particularly photovoltaic devices, without the need for surface passivation. We found that the carrier mobility is not limited by nanowire diameter but is strongly limited by the presence of planar crystallographic defects such as stacking faults in these predominantly wurtzite nanowires. These findings show the great potential of very narrow InP nanowires for electronic devices but indicate that improvements in the crystallographic uniformity of InP nanowires will be critical for future nanowire device engineering.
A quantum dot sensitized solar cell based on vertically aligned carbon nanotube templated ZnO arrays
Resumo:
We report on a quantum dot sensitized solar cell (QDSSC) based on ZnO nanorod coated vertically aligned carbon nanotubes (VACNTs). Electrochemical impedance spectroscopy shows that the electron lifetime for the device based on VACNT/ZnO/CdSe is longer than that for a device based on ZnO/CdSe, indicating that the charge recombination at the interface is reduced by the presence of the VACNTs. Due to the increased surface area and longer electron lifetime, a power conversion efficiency of 1.46% is achieved for the VACNT/ZnO/CdSe devices under an illumination of one Sun (AM 1.5G, 100 mW/cm2). © 2010 Elsevier B.V.
Resumo:
The influence of surfactant on the breakup of a prestretched bubble in a quiescent viscous surrounding is studied by a combination of direct numerical simulation and the solution of a long-wave asymptotic model. The direct numerical simulations describe the evolution toward breakup of an inviscid bubble, while the effects of small but non-zero interior viscosity are readily included in the long-wave model for a fluid thread in the Stokes flow limit. The direct numerical simulations use a specific but realizable and representative initial bubble shape to compare the evolution toward breakup of a clean or surfactant-free bubble and a bubble that is coated with insoluble surfactant. A distinguishing feature of the evolution in the presence of surfactant is the interruption of bubble breakup by formation of a slender quasi-steady thread of the interior fluid. This forms because the decrease in surface area causes a decrease in the surface tension and capillary pressure, until at a small but non-zero radius, equilibrium occurs between the capillary pressure and interior fluid pressure. The long-wave asymptotic model, for a thread with periodic boundary conditions, explains the principal mechanism of the slender thread's formation and confirms, for example, the relatively minor role played by the Marangoni stress. The large-time evolution of the slender thread and the precise location of its breakup are, however, influenced by effects such as the Marangoni stress and surface diffusion of surfactant. © 2008 Cambridge University Press.
Resumo:
The authors report the growth of carbon nanowalls in freestanding, three-dimensional aggregates by microwave plasma-enhanced chemical vapor deposition. Carbon nanowalls extrude from plasma sites into three-dimensional space. The growth is catalyst-free and not limited by nucleating surfaces. The growth mechanism is discussed and compared with similar carbon nanomaterials. High surface area of as-grown carbon nanowalls indicates a potential for electrochemical applications. Field emission measurements show a low field turn-on and long-term stability. The results establish a scalable production method and possible applications using field emission or high surface area. © 2007 American Institute of Physics.
Resumo:
In this work, the formation of soot in a Direct Injection Spark Ignition (DISI) engine is simulated using the Stochastic Reactor Model (SRM) engine code. Volume change, convective heat transfer, turbulent mixing, direct injection and flame propagation are accounted for. In order to simulate flame propagation, the cylinder is divided into an unburned, entrained and burned zone, with the rate of entrainment being governed by empirical equations but combustion modelled with chemical kinetics. The model contains a detailed chemical mechanism as well as a highly detailed soot formation model, however computation times are relatively short. The soot model provides information on the morphology and chemical composition of soot aggregates along with bulk quantities, including soot mass, number density, volume fraction and surface area. The model is first calibrated by simulating experimental data from a Gasoline Direct Injection (GDI) Spark Ignition (SI) engine. The model is then used to simulate experimental data from the literature, where the numbers, sizes and derived mass particulate emissions from a 1.83 L, 4-cylinder, 4 valve production DISI engine were examined. Experimental results from different injection and spark timings are compared with the model and the qualitative trends in aggregate size distribution and emissions match the exhaust gas measurements well. © 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
Here we demonstrate that a free-standing carbon nanotube (CNT) array can be used as a large surface area and high porosity 3D platform for molecular imprinted polymer (MIP), especially for surface imprinting. The thickness of polymer grafted around each CNT can be fine-tuned to imprint different sizes of target molecules, and yet it can be thin enough to expose every imprint site to the target molecules in solution without sacrificing the capacity of binding sites. The performance of this new CNT-MIP architecture was first assessed with a caffeine-imprinted polypyrrole (PPy) coating on two types of CNT arrays: sparse and dense CNTs. Real-time pulsed amperometric detection was used to study the rebinding of the caffeine molecules onto these CNT-MIPPy sensors. The dense CNT-MIPPy sensor presented the highest sensitivity, about 15 times better when compared to the conventional thin film, whereas an improvement of 3.6 times was recorded on the sparse CNT. However, due to the small tube-to-tube spacing in the dense CNT array, electrode fouling was observed during the detection of concentrated caffeine in phosphate buffer solution. A new I-V characterization method using pulsed amperometry was introduced to investigate the electrical characterization of these new devices. The resistance value derived from the I-V plot provides insight into the electrical conductivity of the CNT transducer and also the effective surface area for caffeine imprinting.
Resumo:
The literature relating to road surface failure and design is briefly reviewed and the conventional methods for assessing the road damaging effects of dynamic tire forces are examined. A new time domain technique for analyzing dynamic tire forces and four associated road damage criteria are presented. The force criteria are used to examine the road damaging characteristics of a simple tandem-axle vehicle model for a range of speed and road roughness conditions. It is concluded that for the proposed criteria, the theoretical service life of road surfaces that are prone to fatigue failure may be reduced significantly by the dynamic component of wheel forces. The damage done to approximately five per cent of the road surface area during the passage of a theoretical model vehicle at typical highway speeds may be increased by as much as four times.
Resumo:
In turbomachinery, a considerable proportion of the blade surface area can be covered by transitional boundary layers. This means that accurate prediction of the profile loss and boundary layer behavior in general depends on the accurate modeling of the transitional boundary layers, especially at low Reynolds numbers. This paper presents a model for determining the intermittency resulting from the unsteady transition caused by the passage of wakes over a blade surface. The model is founded on work by Emmons (1951) who showed that the intermittency could be calculated from a knowledge of the behavior of randomly formed turbulent spots. The model is used to calculate the development of the boundary layer on the rotor of a low Reynolds number single-stage turbine. The predictions are compared with experimental results obtained using surface-mounted hot-film anemometers and hot-wire traverses of the rotor midspan boundary layer at two different rotor-stator gaps. The validity and limitations of the model are discussed.
Resumo:
The majority of computational studies of confined explosion hazards apply simple and inaccurate combustion models, requiring ad hoc corrections to obtain realistic flame shapes and often predicting an order of magnitude error in the overpressures. This work describes the application of a laminar flamelet model to a series of two-dimensional test cases. The model is computationally efficient applying an algebraic expression to calculate the flame surface area, an empirical correlation for the laminar flame speed and a novel unstructured, solution adaptive numerical grid system which allows important features of the solution to be resolved close to the flame. Accurate flame shapes are predicted, the correct burning rate is predicted near the walls, and an improvement in the predicted overpressures is obtained. However, in these fully turbulent calculations the overpressures are still too high and the flame arrival times too low, indicating the need for a model for the early laminar burning phase. Due to the computational expense, it is unrealistic to model a laminar flame in the complex geometries involved and therefore a pragmatic approach is employed which constrains the flame to propagate at the laminar flame speed. Transition to turbulent burning occurs at a specified turbulent Reynolds number. With the laminar phase model included, the predicted flame arrival times increase significantly, but are still too low. However, this has no significant effect on the overpressures, which are predicted accurately for a baffled channel test case where rapid transition occurs once the flame reaches the first pair of baffles. In a channel with obstacles on the centreline, transition is more gradual and the accuracy of the predicted overpressures is reduced. However, although the accuracy is still less than desirable in some cases, it is much better than the order of magnitude error previously expected.
Resumo:
Solidly mounted resonators (SMRs) with a top carbon nanotubes (CNTs) surface coating that doubles as an electrode and as a sensing layer have been fabricated. The influence of the CNTs on the frequency response of the resonators was studied by direct comparison to identical devices with a top metallic electrode. It was found that the CNTs introduced significantly less mass load on the resonators and these devices exhibited a greater quality factor, Q (>2000, compared to ∼1000 for devices with metal electrodes), which increases the gravimetric sensitivity of the devices by allowing the tracking of smaller frequency shifts. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode exhibited a higher frequency change for a given load (∼0.25 MHz cm2 ng-1) compared to that of a metal thin film electrode (∼0.14 MHz cm2 ng-1), due to the lower mass of the CNT electrodes and their higher active surface area compared to that of a thin film metal electrode. It is therefore concluded that the use of CNT electrodes on resonators for their use as gravimetric biosensors is a significant improvement over metallic electrodes that are normally employed. © 2011 Elsevier B.V. All rights reserved.
Metal-polymer composite sensors for volatile organic compounds: Part 1. Flow-through chemi-resistors
Resumo:
A new type of chemi-resistor based on a novel metal-polymer composite is described. The composite contains nickel particles with sharp nano-scale surface features, which are intimately coated by the polymer matrix so that they do not come into direct physical contact. No conductive chains of filler particles are formed even at loadings above the percolation threshold and the composite is intrinsically insulating. However, when subjected to compression the composite becomes conductive, with sample resistance falling from ≥ 1012 Ω to < 0.01 Ω. The composite can be formed into insulating granules, which display similar properties to the bulk form. A bed of granules compressed between permeable frits provides a porous structure with a start resistance set by the degree of compression while the granules are free to swell when exposed to volatile organic compounds (VOCs). The granular bed presents a large surface area for the adsorption of VOCs from the gas stream flowing through it. The response of this system to a variety of vapours has been studied for two different sizes of the granular bed and for different matrix polymers. Large responses, ΔR/R0 ≥ 10^7, are observed when saturated vapours are passed through the chemi-resistor. Rapid response allows real time sensing of VOCs and the initial state is recovered in a few seconds by purging with an inert gas stream. The variation in response as a function of VOC concentration is determined.
Resumo:
BACKGROUND: Carbon nanotube (CNT) fiber directly spun from an aerogel has a unique, well-aligned nanostructure (nano-pore and nano-brush), and thus provides high electro-catalytic activity and strong interaction with glucose oxidase enzyme. It shows great potential as a microelectrode for electrochemical biosensors. RESULTS: Cyclic voltammogram results indicate that post-synthesis treatments have great influence on the electrocatalytic activity of CNT fibers. Raman spectroscopy and electrical conductivity tests suggest that fibers annealed at 250 °C remove most of the impurities without damaging the graphite-like structure. This leads to a nano-porous morphology on the surface and the highest conductivity value (1.1 × 10 5 S m -1). Two CNT fiber microelectrode designs were applied to enhance their electron transfer behaviour, and it was found that a design using a 30 nm gold coating is able to linearly cover human physiological glucose level between 2 and 30 mmol L -1. The design also leads to a low detection limit of 25 μmol L -1. CONCLUSIONS: The high performance of CNT fibers not only offers exceptional mechanical and electrical properties, but also provides a large surface area and electron transfer pathway. They consequently make excellent bioactive microelectrodes for glucose biosensing, especially for potential use in implantable devices. © 2011 Society of Chemical Industry.