17 resultados para STRICTLY POSITIVE REAL MATRICES

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to continue to develop the recently introduced concept of a regular positive-real function and its application to the classification of low-complexity two-terminal networks. This paper studies five- and six-element series-parallel networks with three reactive elements and presents a complete characterisation and graphical representation of the realisability conditions for these networks. The results are motivated by an approach to passive mechanical control which makes use of the inerter device. ©2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper addresses the problem of learning a regression model parameterized by a fixed-rank positive semidefinite matrix. The focus is on the nonlinear nature of the search space and on scalability to high-dimensional problems. The mathematical developments rely on the theory of gradient descent algorithms adapted to the Riemannian geometry that underlies the set of fixedrank positive semidefinite matrices. In contrast with previous contributions in the literature, no restrictions are imposed on the range space of the learned matrix. The resulting algorithms maintain a linear complexity in the problem size and enjoy important invariance properties. We apply the proposed algorithms to the problem of learning a distance function parameterized by a positive semidefinite matrix. Good performance is observed on classical benchmarks. © 2011 Gilles Meyer, Silvere Bonnabel and Rodolphe Sepulchre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an algorithm for solving optimization problems defined on a subset of the cone of symmetric positive semidefinite matrices. This algorithm relies on the factorization X = Y Y T , where the number of columns of Y fixes an upper bound on the rank of the positive semidefinite matrix X. It is thus very effective for solving problems that have a low-rank solution. The factorization X = Y Y T leads to a reformulation of the original problem as an optimization on a particular quotient manifold. The present paper discusses the geometry of that manifold and derives a second-order optimization method with guaranteed quadratic convergence. It furthermore provides some conditions on the rank of the factorization to ensure equivalence with the original problem. In contrast to existing methods, the proposed algorithm converges monotonically to the sought solution. Its numerical efficiency is evaluated on two applications: the maximal cut of a graph and the problem of sparse principal component analysis. © 2010 Society for Industrial and Applied Mathematics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a new metric and mean on the set of positive semidefinite matrices of fixed-rank. The proposed metric is derived from a well-chosen Riemannian quotient geometry that generalizes the reductive geometry of the positive cone and the associated natural metric. The resulting Riemannian space has strong geometrical properties: it is geodesically complete, and the metric is invariant with respect to all transformations that preserve angles (orthogonal transformations, scalings, and pseudoinversion). A meaningful approximation of the associated Riemannian distance is proposed, that can be efficiently numerically computed via a simple algorithm based on SVD. The induced mean preserves the rank, possesses the most desirable characteristics of a geometric mean, and is easy to compute. © 2009 Society for Industrial and Applied Mathematics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generalization of the geometric mean of positive scalars to positive definite matrices has attracted considerable attention since the seminal work of Ando. The paper generalizes this framework of matrix means by proposing the definition of a rank-preserving mean for two or an arbitrary number of positive semi-definite matrices of fixed rank. The proposed mean is shown to be geometric in that it satisfies all the expected properties of a rank-preserving geometric mean. The work is motivated by operations on low-rank approximations of positive definite matrices in high-dimensional spaces.© 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The object of this paper is to give a complete treatment of the realizability of positive-real biquadratic impedance functions by six-element series-parallel networks comprising resistors, capacitors, and inductors. This question was studied but not fully resolved in the classical electrical circuit literature. Renewed interest in this question arises in the synthesis of passive mechanical impedances. Recent work by the authors has introduced the concept of a regular positive-real functions. It was shown that five-element networks are capable of realizing all regular and some (but not all) nonregular biquadratic positive-real functions. Accordingly, the focus of this paper is on the realizability of nonregular biquadratics. It will be shown that the only six-element series-parallel networks which are capable of realizing nonregular biquadratic impedances are those with three reactive elements or four reactive elements. We identify a set of networks that can realize all the nonregular biquadratic functions for each of the two cases. The realizability conditions for the networks are expressed in terms of a canonical form for biquadratics. The nonregular realizable region for each of the networks is explicitly characterized. © 2004-2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of low-rank distance matrix completion. This problem amounts to recover the missing entries of a distance matrix when the dimension of the data embedding space is possibly unknown but small compared to the number of considered data points. The focus is on high-dimensional problems. We recast the considered problem into an optimization problem over the set of low-rank positive semidefinite matrices and propose two efficient algorithms for low-rank distance matrix completion. In addition, we propose a strategy to determine the dimension of the embedding space. The resulting algorithms scale to high-dimensional problems and monotonically converge to a global solution of the problem. Finally, numerical experiments illustrate the good performance of the proposed algorithms on benchmarks. © 2011 IEEE.