15 resultados para STRAIN-INDUCED CRYSTALLIZATION
em Cambridge University Engineering Department Publications Database
Resumo:
We demonstrate a silicon optical phase shifter based on photoelastic effect controlled by a piezoelectric thin film. The hysteresis behavior of the piezoelectric response shows potential application as bistable device independent of the optical intensity. © 2012 OSA.
Resumo:
We demonstrate a silicon optical phase shifter based on photoelastic effect controlled by a piezoelectric thin film. The hysteresis behavior of the piezoelectric response shows potential application as bistable device independent of the optical intensity. © OSA 2012.
Resumo:
We demonstrate bistability in a submicron silicon optical phase shifter based on the photoelastic effect. The strain magnitude is electrically controlled by a piezoelectric thin film placed on top of the device. The hysteresis behavior of the piezoelectric response shows potential application as bistable device independent of the optical intensity. © 2012 American Institute of Physics.
Resumo:
Cold-worked austenitic stainless steels have been subject to a pulsed electrochemical treatment in fairly concentrated aqueous solutions of sodium nitrite. The electrochemical reactions that occur transform the strain-induced martensite phase, originally formed by the cold work, back to the austenite phase. However, unlike the conventional thermal annealing process, electrochemically induced surface annealing also hardens the surface of the alloy. Because the process causes transformation of the surface martensite, we term it "electrochemical surface annealing", despite the fact that it results in an increase in surface hardness.
Resumo:
We perform polarization-resolved Raman spectroscopy on graphene in magnetic fields up to 45 T. This reveals a filling-factor-dependent, multicomponent anticrossing structure of the Raman G peak, resulting from magnetophonon resonances between magnetoexcitons and E2g phonons. This is explained with a model of Raman scattering taking into account the effects of spatially inhomogeneous carrier densities and strain. Random fluctuations of strain-induced pseudomagnetic fields lead to increased scattering intensity inside the anticrossing gap, consistent with the experiments. © 2013 American Physical Society.
Resumo:
Herein we report on the transport characteristics of rapid pulsed vacuum-arc thermally annealed, individual and network multi-walled carbon nanotubes. Substantially reduced defect densities (by at least an order of magnitude), measured by micro-Raman spectroscopy, and were achieved by partial reconstruction of the bamboo-type defects during thermal pulsing compared with more traditional single-pulse thermal annealing. Rapid pulsed annealed processed networks and individual multi-walled nanotubes showed a consistent increase in conductivity (of over a factor of five at room temperature), attributed to the reduced number density of resistive axial interfaces and, in the case of network samples, the possible formation of structural bonds between crossed nanotubes. Compared to the highly defective as-grown nanotubes, the pulsed annealed samples exhibited reduced temperature sensitivity in their transport characteristics signifying the dominance of scattering events from structural defects. Transport measurements in the annealed multi-walled nanotubes deviated from linear Ohmic, typically metallic, behavior to an increasingly semiconducting-like behavior attributed to thermally induced axial strains. Rapid pulsed annealed networks had an estimated band gap of 11.26 meV (as-grown; 6.17 meV), and this observed band gap enhancement was inherently more pronounced for individual nanotubes compared with the networks most likely attributed to mechanical pinning effect of the probing electrodes which possibly amplifies the strain induced band gap. In all instances the estimated room temperature band gaps increased by a factor of two. The gating performance of back-gated thin-film transistor structures verified that the observed weak semiconductivity (p-type) inferred from the transport characteristic at room temperature. © 2014 Copyright Taylor & Francis Group, LLC.
Resumo:
The paper describes the use of optical fiber Brillouin Optical Time Domain Reflectometry (BOTDR) to monitor the strain distribution in an existing tunnel while a twin tunnel was bored at close-proximity. The twin circular bored tunnels between Serangoon and Bartley stations on the new Circle Line Stage 3 subway in Singapore were constructed at close-proximity to avoid underpinning the foundations of adjacent buildings. The minimum clear separation of the two tunnels is 2.3m (0.4 times the tunnel diameter). The Outer Tunnel was constructed first, followed by the Inner Tunnel, with the earth-pressure balance tunnel boring machines maintained at a minimum of 100m apart. In this trial application of BOTDR, the strain distribution along the Outer Tunnel was measured, in order to monitor its deformation due to the boring of the Inner Tunnel at close-proximity. The aim of the trial application was to determine the practicality of this monitoring method for future use in 'live' tunnels. This paper compares the measurements obtained from optical fiber BOTDR with conventional methods of tunnel monitoring and describes preliminary installation and workmanship guidelines derived from lessons learnt during this trial. © 2007 ASCE.
Resumo:
This study detailed the structure of turbulence in the air-side and water-side boundary layers in wind-induced surface waves. Inside the air boundary layer, the kurtosis is always greater than 3 (the value for normal distribution) for both horizontal and vertical velocity fluctuations. The skewness for the horizontal velocity is negative, but the skewness for the vertical velocity is always positive. On the water side, the kurtosis is always greater than 3, and the skewness is slightly negative for the horizontal velocity and slightly positive for the vertical velocity. The statistics of the angle between the instantaneous vertical fluctuation and the instantaneous horizontal velocity in the air is similar to those obtained over solid walls. Measurements in water show a large variance, and the peak is biased towards negative angles. In the quadrant analysis, the contribution of quadrants Q2 and Q4 is dominant on both the air side and the water side. The non-dimensional relative contributions and the concentration match fairly well near the interface. Sweeps in the air side (belonging to quadrant Q4) act directly on the interface and exert pressure fluctuations, which, in addition to the tangential stress and form drag, lead to the growth of the waves. The water drops detached from the crest and accelerated by the wind can play a major role in transferring momentum and in enhancing the turbulence level in the water side.On the air side, the Reynolds stress tensor's principal axes are not collinear with the strain rate tensor, and show an angle α σ≈=-20°to-25°. On the water side, the angle is α σ≈=-40°to-45°. The ratio between the maximum and the minimum principal stresses is σ a/σ b=3to4 on the air side, and σ a/σ b=1.5to3 on the water side. In this respect, the air-side flow behaves like a classical boundary layer on a solid wall, while the water-side flow resembles a wake. The frequency of bursting on the water side increases significantly along the flow, which can be attributed to micro-breaking effects - expected to be more frequent at larger fetches. © 2012 Elsevier B.V.
Resumo:
One of the main causes of failure of historic buildings is represented by the differential settlements of foundations. Finite element analysis provides a useful tool for predicting the consequences of given ground displacements in terms of structural damage and also assesses the need of strengthening techniques. The actual damage classification for buildings subject to settlement bases the assessment of the potential damage on the expected crack pattern of the structure. In this paper, the correlation between the physical description of the damage in terms of crack width and the interpretation of the finite element analysis output is analyzed. Different discrete and continuum crack models are applied to simulate an experiment carried on a scale model of a masonry historical building, the Loggia Palace in Brescia (Italy). Results are discussed and a modified version of the fixed total strain smeared crack model is evaluated, in order to solve the problem related to the calculation of the exact crack width.